⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cpteqr.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE CPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999**     .. Scalar Arguments ..      CHARACTER          COMPZ      INTEGER            INFO, LDZ, N*     ..*     .. Array Arguments ..      REAL               D( * ), E( * ), WORK( * )      COMPLEX            Z( LDZ, * )*     ..*     Common block to return operation count and iteration count*     ITCNT is initialized to 0, OPS is only incremented*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..**  Purpose*  =======**  CPTEQR computes all eigenvalues and, optionally, eigenvectors of a*  symmetric positive definite tridiagonal matrix by first factoring the*  matrix using SPTTRF and then calling CBDSQR to compute the singular*  values of the bidiagonal factor.**  This routine computes the eigenvalues of the positive definite*  tridiagonal matrix to high relative accuracy.  This means that if the*  eigenvalues range over many orders of magnitude in size, then the*  small eigenvalues and corresponding eigenvectors will be computed*  more accurately than, for example, with the standard QR method.**  The eigenvectors of a full or band positive definite Hermitian matrix*  can also be found if CHETRD, CHPTRD, or CHBTRD has been used to*  reduce this matrix to tridiagonal form.  (The reduction to*  tridiagonal form, however, may preclude the possibility of obtaining*  high relative accuracy in the small eigenvalues of the original*  matrix, if these eigenvalues range over many orders of magnitude.)**  Arguments*  =========**  COMPZ   (input) CHARACTER*1*          = 'N':  Compute eigenvalues only.*          = 'V':  Compute eigenvectors of original Hermitian*                  matrix also.  Array Z contains the unitary matrix*                  used to reduce the original matrix to tridiagonal*                  form.*          = 'I':  Compute eigenvectors of tridiagonal matrix also.**  N       (input) INTEGER*          The order of the matrix.  N >= 0.**  D       (input/output) REAL array, dimension (N)*          On entry, the n diagonal elements of the tridiagonal matrix.*          On normal exit, D contains the eigenvalues, in descending*          order.**  E       (input/output) REAL array, dimension (N-1)*          On entry, the (n-1) subdiagonal elements of the tridiagonal*          matrix.*          On exit, E has been destroyed.**  Z       (input/output) COMPLEX array, dimension (LDZ, N)*          On entry, if COMPZ = 'V', the unitary matrix used in the*          reduction to tridiagonal form.*          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the*          original Hermitian matrix;*          if COMPZ = 'I', the orthonormal eigenvectors of the*          tridiagonal matrix.*          If INFO > 0 on exit, Z contains the eigenvectors associated*          with only the stored eigenvalues.*          If  COMPZ = 'N', then Z is not referenced.**  LDZ     (input) INTEGER*          The leading dimension of the array Z.  LDZ >= 1, and if*          COMPZ = 'V' or 'I', LDZ >= max(1,N).**  WORK    (workspace) REAL array, dimension (4*N)**  INFO    (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = i, and i is:*                <= N  the Cholesky factorization of the matrix could*                      not be performed because the i-th principal minor*                      was not positive definite.*                > N   the SVD algorithm failed to converge;*                      if INFO = N+i, i off-diagonal elements of the*                      bidiagonal factor did not converge to zero.**  ====================================================================**     .. Parameters ..      COMPLEX            CZERO, CONE      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),     $                   CONE = ( 1.0E+0, 0.0E+0 ) )*     ..*     .. External Functions ..      LOGICAL            LSAME      EXTERNAL           LSAME*     ..*     .. External Subroutines ..      EXTERNAL           CBDSQR, CLASET, SPTTRF, XERBLA*     ..*     .. Local Arrays ..      COMPLEX            C( 1, 1 ), VT( 1, 1 )*     ..*     .. Local Scalars ..      INTEGER            I, ICOMPZ, NRU*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX, SQRT*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( LSAME( COMPZ, 'N' ) ) THEN         ICOMPZ = 0      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN         ICOMPZ = 1      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN         ICOMPZ = 2      ELSE         ICOMPZ = -1      END IF      IF( ICOMPZ.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,     $         N ) ) ) THEN         INFO = -6      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'CPTEQR', -INFO )         RETURN      END IF**     Quick return if possible*      IF( N.EQ.0 )     $   RETURN*      IF( N.EQ.1 ) THEN         IF( ICOMPZ.GT.0 )     $      Z( 1, 1 ) = CONE         RETURN      END IF      IF( ICOMPZ.EQ.2 )     $   CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )**     Call SPTTRF to factor the matrix.*      OPS = OPS + 5*N - 4      CALL SPTTRF( N, D, E, INFO )      IF( INFO.NE.0 )     $   RETURN      DO 10 I = 1, N         D( I ) = SQRT( D( I ) )   10 CONTINUE      DO 20 I = 1, N - 1         E( I ) = E( I )*D( I )   20 CONTINUE**     Call CBDSQR to compute the singular values/vectors of the*     bidiagonal factor.*      IF( ICOMPZ.GT.0 ) THEN         NRU = N      ELSE         NRU = 0      END IF      CALL CBDSQR( 'Lower', N, 0, NRU, 0, D, E, VT, 1, Z, LDZ, C, 1,     $             WORK, INFO )**     Square the singular values.*      IF( INFO.EQ.0 ) THEN         OPS = OPS + N         DO 30 I = 1, N            D( I ) = D( I )*D( I )   30    CONTINUE      ELSE         INFO = N + INFO      END IF*      RETURN**     End of CPTEQR*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -