📄 dtrevc.f
字号:
SUBROUTINE DTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, $ LDVR, MM, M, WORK, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* June 30, 1999** .. Scalar Arguments .. CHARACTER HOWMNY, SIDE INTEGER INFO, LDT, LDVL, LDVR, M, MM, N* ..* .. Array Arguments .. LOGICAL SELECT( * ) DOUBLE PRECISION T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), $ WORK( * )* ..* Common block to return operation count.* OPS is only incremented, OPST is used to accumulate small* contributions to OPS to avoid roundoff error* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. DOUBLE PRECISION ITCNT, OPS* ..** Purpose* =======** DTREVC computes some or all of the right and/or left eigenvectors of* a real upper quasi-triangular matrix T.** The right eigenvector x and the left eigenvector y of T corresponding* to an eigenvalue w are defined by:** T*x = w*x, y'*T = w*y'** where y' denotes the conjugate transpose of the vector y.** If all eigenvectors are requested, the routine may either return the* matrices X and/or Y of right or left eigenvectors of T, or the* products Q*X and/or Q*Y, where Q is an input orthogonal* matrix. If T was obtained from the real-Schur factorization of an* original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of* right or left eigenvectors of A.** T must be in Schur canonical form (as returned by DHSEQR), that is,* block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each* 2-by-2 diagonal block has its diagonal elements equal and its* off-diagonal elements of opposite sign. Corresponding to each 2-by-2* diagonal block is a complex conjugate pair of eigenvalues and* eigenvectors; only one eigenvector of the pair is computed, namely* the one corresponding to the eigenvalue with positive imaginary part.** Arguments* =========** SIDE (input) CHARACTER*1* = 'R': compute right eigenvectors only;* = 'L': compute left eigenvectors only;* = 'B': compute both right and left eigenvectors.** HOWMNY (input) CHARACTER*1* = 'A': compute all right and/or left eigenvectors;* = 'B': compute all right and/or left eigenvectors,* and backtransform them using the input matrices* supplied in VR and/or VL;* = 'S': compute selected right and/or left eigenvectors,* specified by the logical array SELECT.** SELECT (input/output) LOGICAL array, dimension (N)* If HOWMNY = 'S', SELECT specifies the eigenvectors to be* computed.* If HOWMNY = 'A' or 'B', SELECT is not referenced.* To select the real eigenvector corresponding to a real* eigenvalue w(j), SELECT(j) must be set to .TRUE.. To select* the complex eigenvector corresponding to a complex conjugate* pair w(j) and w(j+1), either SELECT(j) or SELECT(j+1) must be* set to .TRUE.; then on exit SELECT(j) is .TRUE. and* SELECT(j+1) is .FALSE..** N (input) INTEGER* The order of the matrix T. N >= 0.** T (input) DOUBLE PRECISION array, dimension (LDT,N)* The upper quasi-triangular matrix T in Schur canonical form.** LDT (input) INTEGER* The leading dimension of the array T. LDT >= max(1,N).** VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must* contain an N-by-N matrix Q (usually the orthogonal matrix Q* of Schur vectors returned by DHSEQR).* On exit, if SIDE = 'L' or 'B', VL contains:* if HOWMNY = 'A', the matrix Y of left eigenvectors of T;* VL has the same quasi-lower triangular form* as T'. If T(i,i) is a real eigenvalue, then* the i-th column VL(i) of VL is its* corresponding eigenvector. If T(i:i+1,i:i+1)* is a 2-by-2 block whose eigenvalues are* complex-conjugate eigenvalues of T, then* VL(i)+sqrt(-1)*VL(i+1) is the complex* eigenvector corresponding to the eigenvalue* with positive real part.* if HOWMNY = 'B', the matrix Q*Y;* if HOWMNY = 'S', the left eigenvectors of T specified by* SELECT, stored consecutively in the columns* of VL, in the same order as their* eigenvalues.* A complex eigenvector corresponding to a complex eigenvalue* is stored in two consecutive columns, the first holding the* real part, and the second the imaginary part.* If SIDE = 'R', VL is not referenced.** LDVL (input) INTEGER* The leading dimension of the array VL. LDVL >= max(1,N) if* SIDE = 'L' or 'B'; LDVL >= 1 otherwise.** VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must* contain an N-by-N matrix Q (usually the orthogonal matrix Q* of Schur vectors returned by DHSEQR).* On exit, if SIDE = 'R' or 'B', VR contains:* if HOWMNY = 'A', the matrix X of right eigenvectors of T;* VR has the same quasi-upper triangular form* as T. If T(i,i) is a real eigenvalue, then* the i-th column VR(i) of VR is its* corresponding eigenvector. If T(i:i+1,i:i+1)* is a 2-by-2 block whose eigenvalues are* complex-conjugate eigenvalues of T, then* VR(i)+sqrt(-1)*VR(i+1) is the complex* eigenvector corresponding to the eigenvalue* with positive real part.* if HOWMNY = 'B', the matrix Q*X;* if HOWMNY = 'S', the right eigenvectors of T specified by* SELECT, stored consecutively in the columns* of VR, in the same order as their* eigenvalues.* A complex eigenvector corresponding to a complex eigenvalue* is stored in two consecutive columns, the first holding the* real part and the second the imaginary part.* If SIDE = 'L', VR is not referenced.** LDVR (input) INTEGER* The leading dimension of the array VR. LDVR >= max(1,N) if* SIDE = 'R' or 'B'; LDVR >= 1 otherwise.** MM (input) INTEGER* The number of columns in the arrays VL and/or VR. MM >= M.** M (output) INTEGER* The number of columns in the arrays VL and/or VR actually* used to store the eigenvectors.* If HOWMNY = 'A' or 'B', M is set to N.* Each selected real eigenvector occupies one column and each* selected complex eigenvector occupies two columns.** WORK (workspace) DOUBLE PRECISION array, dimension (3*N)** INFO (output) INTEGER* = 0: successful exit* < 0: if INFO = -i, the i-th argument had an illegal value** Further Details* ===============** The algorithm used in this program is basically backward (forward)* substitution, with scaling to make the the code robust against* possible overflow.** Each eigenvector is normalized so that the element of largest* magnitude has magnitude 1; here the magnitude of a complex number* (x,y) is taken to be |x| + |y|.** =====================================================================** .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )* ..* .. Local Scalars .. LOGICAL ALLV, BOTHV, LEFTV, OVER, PAIR, RIGHTV, SOMEV INTEGER I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI, N2 DOUBLE PRECISION BETA, BIGNUM, EMAX, OPST, OVFL, REC, REMAX, $ SCALE, SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX, $ WI, WR, XNORM* ..* .. External Functions .. LOGICAL LSAME INTEGER IDAMAX DOUBLE PRECISION DDOT, DLAMCH EXTERNAL LSAME, IDAMAX, DDOT, DLAMCH* ..* .. External Subroutines .. EXTERNAL DAXPY, DCOPY, DGEMV, DLABAD, DLALN2, DSCAL, $ XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT* ..* .. Local Arrays .. DOUBLE PRECISION X( 2, 2 )* ..* .. Executable Statements ..** Decode and test the input parameters* BOTHV = LSAME( SIDE, 'B' ) RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV* ALLV = LSAME( HOWMNY, 'A' ) OVER = LSAME( HOWMNY, 'B' ) SOMEV = LSAME( HOWMNY, 'S' )* INFO = 0 IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN INFO = -1 ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDT.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN INFO = -8 ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN INFO = -10 ELSE** Set M to the number of columns required to store the selected* eigenvectors, standardize the array SELECT if necessary, and* test MM.* IF( SOMEV ) THEN M = 0 PAIR = .FALSE. DO 10 J = 1, N IF( PAIR ) THEN PAIR = .FALSE. SELECT( J ) = .FALSE. ELSE IF( J.LT.N ) THEN IF( T( J+1, J ).EQ.ZERO ) THEN IF( SELECT( J ) ) $ M = M + 1 ELSE PAIR = .TRUE. IF( SELECT( J ) .OR. SELECT( J+1 ) ) THEN SELECT( J ) = .TRUE. M = M + 2 END IF END IF ELSE IF( SELECT( N ) ) $ M = M + 1 END IF END IF 10 CONTINUE ELSE M = N END IF* IF( MM.LT.M ) THEN INFO = -11 END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DTREVC', -INFO ) RETURN END IF** Quick return if possible.* IF( N.EQ.0 ) $ RETURN**** Initialize OPST = 0***** Set the constants to control overflow.* UNFL = DLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL CALL DLABAD( UNFL, OVFL ) ULP = DLAMCH( 'Precision' ) SMLNUM = UNFL*( N / ULP ) BIGNUM = ( ONE-ULP ) / SMLNUM** Compute 1-norm of each column of strictly upper triangular* part of T to control overflow in triangular solver.* WORK( 1 ) = ZERO DO 30 J = 2, N WORK( J ) = ZERO DO 20 I = 1, J - 1 WORK( J ) = WORK( J ) + ABS( T( I, J ) ) 20 CONTINUE 30 CONTINUE*** OPS = OPS + N*( N-1 ) / 2***** Index IP is used to specify the real or complex eigenvalue:* IP = 0, real eigenvalue,* 1, first of conjugate complex pair: (wr,wi)* -1, second of conjugate complex pair: (wr,wi)* N2 = 2*N* IF( RIGHTV ) THEN** Compute right eigenvectors.* IP = 0 IS = M DO 140 KI = N, 1, -1* IF( IP.EQ.1 ) $ GO TO 130 IF( KI.EQ.1 ) $ GO TO 40 IF( T( KI, KI-1 ).EQ.ZERO ) $ GO TO 40 IP = -1* 40 CONTINUE IF( SOMEV ) THEN IF( IP.EQ.0 ) THEN IF( .NOT.SELECT( KI ) ) $ GO TO 130 ELSE IF( .NOT.SELECT( KI-1 ) ) $ GO TO 130 END IF END IF** Compute the KI-th eigenvalue (WR,WI).* WR = T( KI, KI ) WI = ZERO IF( IP.NE.0 ) $ WI = SQRT( ABS( T( KI, KI-1 ) ) )* $ SQRT( ABS( T( KI-1, KI ) ) ) SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )* IF( IP.EQ.0 ) THEN** Real right eigenvector* WORK( KI+N ) = ONE** Form right-hand side* DO 50 K = 1, KI - 1 WORK( K+N ) = -T( K, KI ) 50 CONTINUE** Solve the upper quasi-triangular system:* (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -