⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtrevc.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 3 页
字号:
      SUBROUTINE DTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,     $                   LDVR, MM, M, WORK, INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     June 30, 1999**     .. Scalar Arguments ..      CHARACTER          HOWMNY, SIDE      INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N*     ..*     .. Array Arguments ..      LOGICAL            SELECT( * )      DOUBLE PRECISION   T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),     $                   WORK( * )*     ..*     Common block to return operation count.*     OPS is only incremented, OPST is used to accumulate small*     contributions to OPS to avoid roundoff error*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DTREVC computes some or all of the right and/or left eigenvectors of*  a real upper quasi-triangular matrix T.**  The right eigenvector x and the left eigenvector y of T corresponding*  to an eigenvalue w are defined by:**               T*x = w*x,     y'*T = w*y'**  where y' denotes the conjugate transpose of the vector y.**  If all eigenvectors are requested, the routine may either return the*  matrices X and/or Y of right or left eigenvectors of T, or the*  products Q*X and/or Q*Y, where Q is an input orthogonal*  matrix. If T was obtained from the real-Schur factorization of an*  original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of*  right or left eigenvectors of A.**  T must be in Schur canonical form (as returned by DHSEQR), that is,*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each*  2-by-2 diagonal block has its diagonal elements equal and its*  off-diagonal elements of opposite sign.  Corresponding to each 2-by-2*  diagonal block is a complex conjugate pair of eigenvalues and*  eigenvectors; only one eigenvector of the pair is computed, namely*  the one corresponding to the eigenvalue with positive imaginary part.**  Arguments*  =========**  SIDE    (input) CHARACTER*1*          = 'R':  compute right eigenvectors only;*          = 'L':  compute left eigenvectors only;*          = 'B':  compute both right and left eigenvectors.**  HOWMNY  (input) CHARACTER*1*          = 'A':  compute all right and/or left eigenvectors;*          = 'B':  compute all right and/or left eigenvectors,*                  and backtransform them using the input matrices*                  supplied in VR and/or VL;*          = 'S':  compute selected right and/or left eigenvectors,*                  specified by the logical array SELECT.**  SELECT  (input/output) LOGICAL array, dimension (N)*          If HOWMNY = 'S', SELECT specifies the eigenvectors to be*          computed.*          If HOWMNY = 'A' or 'B', SELECT is not referenced.*          To select the real eigenvector corresponding to a real*          eigenvalue w(j), SELECT(j) must be set to .TRUE..  To select*          the complex eigenvector corresponding to a complex conjugate*          pair w(j) and w(j+1), either SELECT(j) or SELECT(j+1) must be*          set to .TRUE.; then on exit SELECT(j) is .TRUE. and*          SELECT(j+1) is .FALSE..**  N       (input) INTEGER*          The order of the matrix T. N >= 0.**  T       (input) DOUBLE PRECISION array, dimension (LDT,N)*          The upper quasi-triangular matrix T in Schur canonical form.**  LDT     (input) INTEGER*          The leading dimension of the array T. LDT >= max(1,N).**  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must*          contain an N-by-N matrix Q (usually the orthogonal matrix Q*          of Schur vectors returned by DHSEQR).*          On exit, if SIDE = 'L' or 'B', VL contains:*          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;*                           VL has the same quasi-lower triangular form*                           as T'. If T(i,i) is a real eigenvalue, then*                           the i-th column VL(i) of VL  is its*                           corresponding eigenvector. If T(i:i+1,i:i+1)*                           is a 2-by-2 block whose eigenvalues are*                           complex-conjugate eigenvalues of T, then*                           VL(i)+sqrt(-1)*VL(i+1) is the complex*                           eigenvector corresponding to the eigenvalue*                           with positive real part.*          if HOWMNY = 'B', the matrix Q*Y;*          if HOWMNY = 'S', the left eigenvectors of T specified by*                           SELECT, stored consecutively in the columns*                           of VL, in the same order as their*                           eigenvalues.*          A complex eigenvector corresponding to a complex eigenvalue*          is stored in two consecutive columns, the first holding the*          real part, and the second the imaginary part.*          If SIDE = 'R', VL is not referenced.**  LDVL    (input) INTEGER*          The leading dimension of the array VL.  LDVL >= max(1,N) if*          SIDE = 'L' or 'B'; LDVL >= 1 otherwise.**  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must*          contain an N-by-N matrix Q (usually the orthogonal matrix Q*          of Schur vectors returned by DHSEQR).*          On exit, if SIDE = 'R' or 'B', VR contains:*          if HOWMNY = 'A', the matrix X of right eigenvectors of T;*                           VR has the same quasi-upper triangular form*                           as T. If T(i,i) is a real eigenvalue, then*                           the i-th column VR(i) of VR  is its*                           corresponding eigenvector. If T(i:i+1,i:i+1)*                           is a 2-by-2 block whose eigenvalues are*                           complex-conjugate eigenvalues of T, then*                           VR(i)+sqrt(-1)*VR(i+1) is the complex*                           eigenvector corresponding to the eigenvalue*                           with positive real part.*          if HOWMNY = 'B', the matrix Q*X;*          if HOWMNY = 'S', the right eigenvectors of T specified by*                           SELECT, stored consecutively in the columns*                           of VR, in the same order as their*                           eigenvalues.*          A complex eigenvector corresponding to a complex eigenvalue*          is stored in two consecutive columns, the first holding the*          real part and the second the imaginary part.*          If SIDE = 'L', VR is not referenced.**  LDVR    (input) INTEGER*          The leading dimension of the array VR.  LDVR >= max(1,N) if*          SIDE = 'R' or 'B'; LDVR >= 1 otherwise.**  MM      (input) INTEGER*          The number of columns in the arrays VL and/or VR. MM >= M.**  M       (output) INTEGER*          The number of columns in the arrays VL and/or VR actually*          used to store the eigenvectors.*          If HOWMNY = 'A' or 'B', M is set to N.*          Each selected real eigenvector occupies one column and each*          selected complex eigenvector occupies two columns.**  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)**  INFO    (output) INTEGER*          = 0:  successful exit*          < 0:  if INFO = -i, the i-th argument had an illegal value**  Further Details*  ===============**  The algorithm used in this program is basically backward (forward)*  substitution, with scaling to make the the code robust against*  possible overflow.**  Each eigenvector is normalized so that the element of largest*  magnitude has magnitude 1; here the magnitude of a complex number*  (x,y) is taken to be |x| + |y|.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ZERO, ONE      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )*     ..*     .. Local Scalars ..      LOGICAL            ALLV, BOTHV, LEFTV, OVER, PAIR, RIGHTV, SOMEV      INTEGER            I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI, N2      DOUBLE PRECISION   BETA, BIGNUM, EMAX, OPST, OVFL, REC, REMAX,     $                   SCALE, SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX,     $                   WI, WR, XNORM*     ..*     .. External Functions ..      LOGICAL            LSAME      INTEGER            IDAMAX      DOUBLE PRECISION   DDOT, DLAMCH      EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH*     ..*     .. External Subroutines ..      EXTERNAL           DAXPY, DCOPY, DGEMV, DLABAD, DLALN2, DSCAL,     $                   XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, MAX, SQRT*     ..*     .. Local Arrays ..      DOUBLE PRECISION   X( 2, 2 )*     ..*     .. Executable Statements ..**     Decode and test the input parameters*      BOTHV = LSAME( SIDE, 'B' )      RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV      LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV*      ALLV = LSAME( HOWMNY, 'A' )      OVER = LSAME( HOWMNY, 'B' )      SOMEV = LSAME( HOWMNY, 'S' )*      INFO = 0      IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN         INFO = -1      ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN         INFO = -2      ELSE IF( N.LT.0 ) THEN         INFO = -4      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN         INFO = -6      ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN         INFO = -8      ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN         INFO = -10      ELSE**        Set M to the number of columns required to store the selected*        eigenvectors, standardize the array SELECT if necessary, and*        test MM.*         IF( SOMEV ) THEN            M = 0            PAIR = .FALSE.            DO 10 J = 1, N               IF( PAIR ) THEN                  PAIR = .FALSE.                  SELECT( J ) = .FALSE.               ELSE                  IF( J.LT.N ) THEN                     IF( T( J+1, J ).EQ.ZERO ) THEN                        IF( SELECT( J ) )     $                     M = M + 1                     ELSE                        PAIR = .TRUE.                        IF( SELECT( J ) .OR. SELECT( J+1 ) ) THEN                           SELECT( J ) = .TRUE.                           M = M + 2                        END IF                     END IF                  ELSE                     IF( SELECT( N ) )     $                  M = M + 1                  END IF               END IF   10       CONTINUE         ELSE            M = N         END IF*         IF( MM.LT.M ) THEN            INFO = -11         END IF      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DTREVC', -INFO )         RETURN      END IF**     Quick return if possible.*      IF( N.EQ.0 )     $   RETURN****     Initialize      OPST = 0*****     Set the constants to control overflow.*      UNFL = DLAMCH( 'Safe minimum' )      OVFL = ONE / UNFL      CALL DLABAD( UNFL, OVFL )      ULP = DLAMCH( 'Precision' )      SMLNUM = UNFL*( N / ULP )      BIGNUM = ( ONE-ULP ) / SMLNUM**     Compute 1-norm of each column of strictly upper triangular*     part of T to control overflow in triangular solver.*      WORK( 1 ) = ZERO      DO 30 J = 2, N         WORK( J ) = ZERO         DO 20 I = 1, J - 1            WORK( J ) = WORK( J ) + ABS( T( I, J ) )   20    CONTINUE   30 CONTINUE***      OPS = OPS + N*( N-1 ) / 2*****     Index IP is used to specify the real or complex eigenvalue:*       IP = 0, real eigenvalue,*            1, first of conjugate complex pair: (wr,wi)*           -1, second of conjugate complex pair: (wr,wi)*      N2 = 2*N*      IF( RIGHTV ) THEN**        Compute right eigenvectors.*         IP = 0         IS = M         DO 140 KI = N, 1, -1*            IF( IP.EQ.1 )     $         GO TO 130            IF( KI.EQ.1 )     $         GO TO 40            IF( T( KI, KI-1 ).EQ.ZERO )     $         GO TO 40            IP = -1*   40       CONTINUE            IF( SOMEV ) THEN               IF( IP.EQ.0 ) THEN                  IF( .NOT.SELECT( KI ) )     $               GO TO 130               ELSE                  IF( .NOT.SELECT( KI-1 ) )     $               GO TO 130               END IF            END IF**           Compute the KI-th eigenvalue (WR,WI).*            WR = T( KI, KI )            WI = ZERO            IF( IP.NE.0 )     $         WI = SQRT( ABS( T( KI, KI-1 ) ) )*     $              SQRT( ABS( T( KI-1, KI ) ) )            SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )*            IF( IP.EQ.0 ) THEN**              Real right eigenvector*               WORK( KI+N ) = ONE**              Form right-hand side*               DO 50 K = 1, KI - 1                  WORK( K+N ) = -T( K, KI )   50          CONTINUE**              Solve the upper quasi-triangular system:*                 (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -