⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlasd8.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,     $                   DSIGMA, WORK, INFO )**  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,*     Courant Institute, NAG Ltd., and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            ICOMPQ, INFO, K, LDDIFR*     ..*     .. Array Arguments ..      DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),     $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),     $                   Z( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLASD8 finds the square roots of the roots of the secular equation,*  as defined by the values in DSIGMA and Z. It makes the appropriate*  calls to DLASD4, and stores, for each  element in D, the distance*  to its two nearest poles (elements in DSIGMA). It also updates*  the arrays VF and VL, the first and last components of all the*  right singular vectors of the original bidiagonal matrix.**  DLASD8 is called from DLASD6.**  Arguments*  =========**  ICOMPQ  (input) INTEGER*          Specifies whether singular vectors are to be computed in*          factored form in the calling routine:*          = 0: Compute singular values only.*          = 1: Compute singular vectors in factored form as well.**  K       (input) INTEGER*          The number of terms in the rational function to be solved*          by DLASD4.  K >= 1.**  D       (output) DOUBLE PRECISION array, dimension ( K )*          On output, D contains the updated singular values.**  Z       (input) DOUBLE PRECISION array, dimension ( K )*          The first K elements of this array contain the components*          of the deflation-adjusted updating row vector.**  VF      (input/output) DOUBLE PRECISION array, dimension ( K )*          On entry, VF contains  information passed through DBEDE8.*          On exit, VF contains the first K components of the first*          components of all right singular vectors of the bidiagonal*          matrix.**  VL      (input/output) DOUBLE PRECISION array, dimension ( K )*          On entry, VL contains  information passed through DBEDE8.*          On exit, VL contains the first K components of the last*          components of all right singular vectors of the bidiagonal*          matrix.**  DIFL    (output) DOUBLE PRECISION array, dimension ( K )*          On exit, DIFL(I) = D(I) - DSIGMA(I).**  DIFR    (output) DOUBLE PRECISION array,*                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and*                   dimension ( K ) if ICOMPQ = 0.*          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not*          defined and will not be referenced.**          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the*          normalizing factors for the right singular vector matrix.**  LDDIFR  (input) INTEGER*          The leading dimension of DIFR, must be at least K.**  DSIGMA  (input) DOUBLE PRECISION array, dimension ( K )*          The first K elements of this array contain the old roots*          of the deflated updating problem.  These are the poles*          of the secular equation.**  WORK    (workspace) DOUBLE PRECISION array, dimension at least 3 * K**  INFO    (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = 1, an singular value did not converge**  Further Details*  ===============**  Based on contributions by*     Ming Gu and Huan Ren, Computer Science Division, University of*     California at Berkeley, USA**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE      PARAMETER          ( ONE = 1.0D0 )*     ..*     .. Local Scalars ..      INTEGER            I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J      DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP*     ..*     .. External Subroutines ..      EXTERNAL           DCOPY, DLASCL, DLASD4, DLASET, XERBLA*     ..*     .. External Functions ..      DOUBLE PRECISION   DDOT, DLAMC3, DNRM2      EXTERNAL           DDOT, DLAMC3, DNRM2*     ..*     .. Intrinsic Functions ..      INTRINSIC          DBLE, ABS, SIGN, SQRT*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN         INFO = -1      ELSE IF( K.LT.1 ) THEN         INFO = -2      ELSE IF( LDDIFR.LT.K ) THEN         INFO = -9      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLASD8', -INFO )         RETURN      END IF**     Quick return if possible*      IF( K.EQ.1 ) THEN         D( 1 ) = ABS( Z( 1 ) )         DIFL( 1 ) = D( 1 )         IF( ICOMPQ.EQ.1 ) THEN            DIFL( 2 ) = ONE            DIFR( 1, 2 ) = ONE         END IF         RETURN      END IF**     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can*     be computed with high relative accuracy (barring over/underflow).*     This is a problem on machines without a guard digit in*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),*     which on any of these machines zeros out the bottommost*     bit of DSIGMA(I) if it is 1; this makes the subsequent*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation*     occurs. On binary machines with a guard digit (almost all*     machines) it does not change DSIGMA(I) at all. On hexadecimal*     and decimal machines with a guard digit, it slightly*     changes the bottommost bits of DSIGMA(I). It does not account*     for hexadecimal or decimal machines without guard digits*     (we know of none). We use a subroutine call to compute*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating*     this code.*      OPS = OPS + DBLE( 2*K )      DO 10 I = 1, K         DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )   10 CONTINUE**     Book keeping.*      IWK1 = 1      IWK2 = IWK1 + K      IWK3 = IWK2 + K      IWK2I = IWK2 - 1      IWK3I = IWK3 - 1**     Normalize Z.*      OPS = OPS + DBLE( 3*K + 1 )      RHO = DNRM2( K, Z, 1 )      CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )      RHO = RHO*RHO**     Initialize WORK(IWK3).*      CALL DLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K )**     Compute the updated singular values, the arrays DIFL, DIFR,*     and the updated Z.*      DO 40 J = 1, K         CALL DLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ),     $                WORK( IWK2 ), INFO )**        If the root finder fails, the computation is terminated.*         IF( INFO.NE.0 ) THEN            RETURN         END IF         OPS = OPS + DBLE( 2 )         WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J )         DIFL( J ) = -WORK( J )         DIFR( J, 1 ) = -WORK( J+1 )         OPS = OPS + DBLE( 6*( J - 1 ) )         DO 20 I = 1, J - 1            WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*     $                        WORK( IWK2I+I ) / ( DSIGMA( I )-     $                        DSIGMA( J ) ) / ( DSIGMA( I )+     $                        DSIGMA( J ) )   20    CONTINUE         OPS = OPS + DBLE( 6*( K-J ) )         DO 30 I = J + 1, K            WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*     $                        WORK( IWK2I+I ) / ( DSIGMA( I )-     $                        DSIGMA( J ) ) / ( DSIGMA( I )+     $                        DSIGMA( J ) )   30    CONTINUE   40 CONTINUE**     Compute updated Z.*      OPS = OPS + DBLE( K )      DO 50 I = 1, K         Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) )   50 CONTINUE**     Update VF and VL.*      DO 80 J = 1, K         DIFLJ = DIFL( J )         DJ = D( J )         DSIGJ = -DSIGMA( J )         IF( J.LT.K ) THEN            DIFRJ = -DIFR( J, 1 )            DSIGJP = -DSIGMA( J+1 )         END IF         OPS = OPS + DBLE( 3 )         WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ )         OPS = OPS + DBLE( 5*( J-1 ) )         DO 60 I = 1, J - 1            WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ )     $                   / ( DSIGMA( I )+DJ )   60    CONTINUE         OPS = OPS + DBLE( 5*( K-J ) )         DO 70 I = J + 1, K            WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ )     $                   / ( DSIGMA( I )+DJ )   70    CONTINUE         OPS = OPS + DBLE( 6*K )         TEMP = DNRM2( K, WORK, 1 )         WORK( IWK2I+J ) = DDOT( K, WORK, 1, VF, 1 ) / TEMP         WORK( IWK3I+J ) = DDOT( K, WORK, 1, VL, 1 ) / TEMP         IF( ICOMPQ.EQ.1 ) THEN            DIFR( J, 2 ) = TEMP         END IF   80 CONTINUE*      CALL DCOPY( K, WORK( IWK2 ), 1, VF, 1 )      CALL DCOPY( K, WORK( IWK3 ), 1, VL, 1 )*      RETURN**     End of DLASD8*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -