📄 slaed9.f
字号:
SUBROUTINE SLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W, $ S, LDS, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,* Courant Institute, NAG Ltd., and Rice University* September 30, 1994** .. Scalar Arguments .. INTEGER INFO, K, KSTART, KSTOP, LDQ, LDS, N REAL RHO* ..* .. Array Arguments .. REAL D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ), $ W( * )* ..* Common block to return operation count and iteration count* ITCNT is unchanged, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** SLAED9 finds the roots of the secular equation, as defined by the* values in D, Z, and RHO, between KSTART and KSTOP. It makes the* appropriate calls to SLAED4 and then stores the new matrix of* eigenvectors for use in calculating the next level of Z vectors.** Arguments* =========** K (input) INTEGER* The number of terms in the rational function to be solved by* SLAED4. K >= 0.** KSTART (input) INTEGER* KSTOP (input) INTEGER* The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP* are to be computed. 1 <= KSTART <= KSTOP <= K.** N (input) INTEGER* The number of rows and columns in the Q matrix.* N >= K (delation may result in N > K).** D (output) REAL array, dimension (N)* D(I) contains the updated eigenvalues* for KSTART <= I <= KSTOP.** Q (workspace) REAL array, dimension (LDQ,N)** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max( 1, N ).** RHO (input) REAL* The value of the parameter in the rank one update equation.* RHO >= 0 required.** DLAMDA (input) REAL array, dimension (K)* The first K elements of this array contain the old roots* of the deflated updating problem. These are the poles* of the secular equation.** W (input) REAL array, dimension (K)* The first K elements of this array contain the components* of the deflation-adjusted updating vector.** S (output) REAL array, dimension (LDS, K)* Will contain the eigenvectors of the repaired matrix which* will be stored for subsequent Z vector calculation and* multiplied by the previously accumulated eigenvectors* to update the system.** LDS (input) INTEGER* The leading dimension of S. LDS >= max( 1, K ).** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: if INFO = 1, an eigenvalue did not converge** Further Details* ===============** Based on contributions by* Jeff Rutter, Computer Science Division, University of California* at Berkeley, USA** =====================================================================** .. Local Scalars .. INTEGER I, J REAL TEMP* ..* .. External Functions .. REAL SLAMC3, SNRM2 EXTERNAL SLAMC3, SNRM2* ..* .. External Subroutines .. EXTERNAL SCOPY, SLAED4, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC MAX, SIGN, SQRT* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( K.LT.0 ) THEN INFO = -1 ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN INFO = -2 ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) ) $ THEN INFO = -3 ELSE IF( N.LT.K ) THEN INFO = -4 ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN INFO = -7 ELSE IF( LDS.LT.MAX( 1, K ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAED9', -INFO ) RETURN END IF** Quick return if possible* IF( K.EQ.0 ) $ RETURN** Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can* be computed with high relative accuracy (barring over/underflow).* This is a problem on machines without a guard digit in* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),* which on any of these machines zeros out the bottommost* bit of DLAMDA(I) if it is 1; this makes the subsequent* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation* occurs. On binary machines with a guard digit (almost all* machines) it does not change DLAMDA(I) at all. On hexadecimal* and decimal machines with a guard digit, it slightly* changes the bottommost bits of DLAMDA(I). It does not account* for hexadecimal or decimal machines without guard digits* (we know of none). We use a subroutine call to compute* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating* this code.* OPS = OPS + 2*N DO 10 I = 1, N DLAMDA( I ) = SLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I ) 10 CONTINUE* DO 20 J = KSTART, KSTOP CALL SLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )** If the zero finder fails, the computation is terminated.* IF( INFO.NE.0 ) $ GO TO 120 20 CONTINUE* IF( K.EQ.1 .OR. K.EQ.2 ) THEN DO 40 I = 1, K DO 30 J = 1, K S( J, I ) = Q( J, I ) 30 CONTINUE 40 CONTINUE GO TO 120 END IF** Compute updated W.* CALL SCOPY( K, W, 1, S, 1 )** Initialize W(I) = Q(I,I)* CALL SCOPY( K, Q, LDQ+1, W, 1 ) OPS = OPS + 3*K*( K-1 ) + K DO 70 J = 1, K DO 50 I = 1, J - 1 W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) ) 50 CONTINUE DO 60 I = J + 1, K W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) ) 60 CONTINUE 70 CONTINUE DO 80 I = 1, K W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) ) 80 CONTINUE** Compute eigenvectors of the modified rank-1 modification.* OPS = OPS + 4*K*K DO 110 J = 1, K DO 90 I = 1, K Q( I, J ) = W( I ) / Q( I, J ) 90 CONTINUE TEMP = SNRM2( K, Q( 1, J ), 1 ) DO 100 I = 1, K S( I, J ) = Q( I, J ) / TEMP 100 CONTINUE 110 CONTINUE* 120 CONTINUE RETURN** End of SLAED9* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -