⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlasd2.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,     $                   LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,     $                   IDXC, IDXQ, COLTYP, INFO )**  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,*     Courant Institute, NAG Ltd., and Rice University*     October 31, 1999**     .. Scalar Arguments ..      INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE      DOUBLE PRECISION   ALPHA, BETA*     ..*     .. Array Arguments ..      INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),     $                   IDXQ( * )      DOUBLE PRECISION   D( * ), DSIGMA( * ), U( LDU, * ),     $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),     $                   Z( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLASD2 merges the two sets of singular values together into a single*  sorted set.  Then it tries to deflate the size of the problem.*  There are two ways in which deflation can occur:  when two or more*  singular values are close together or if there is a tiny entry in the*  Z vector.  For each such occurrence the order of the related secular*  equation problem is reduced by one.**  DLASD2 is called from DLASD1.**  Arguments*  =========**  NL     (input) INTEGER*         The row dimension of the upper block.  NL >= 1.**  NR     (input) INTEGER*         The row dimension of the lower block.  NR >= 1.**  SQRE   (input) INTEGER*         = 0: the lower block is an NR-by-NR square matrix.*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.**         The bidiagonal matrix has N = NL + NR + 1 rows and*         M = N + SQRE >= N columns.**  K      (output) INTEGER*         Contains the dimension of the non-deflated matrix,*         This is the order of the related secular equation. 1 <= K <=N.**  D      (input/output) DOUBLE PRECISION array, dimension(N)*         On entry D contains the singular values of the two submatrices*         to be combined.  On exit D contains the trailing (N-K) updated*         singular values (those which were deflated) sorted into*         increasing order.**  ALPHA  (input) DOUBLE PRECISION*         Contains the diagonal element associated with the added row.**  BETA   (input) DOUBLE PRECISION*         Contains the off-diagonal element associated with the added*         row.**  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N)*         On entry U contains the left singular vectors of two*         submatrices in the two square blocks with corners at (1,1),*         (NL, NL), and (NL+2, NL+2), (N,N).*         On exit U contains the trailing (N-K) updated left singular*         vectors (those which were deflated) in its last N-K columns.**  LDU    (input) INTEGER*         The leading dimension of the array U.  LDU >= N.**  Z      (output) DOUBLE PRECISION array, dimension(N)*         On exit Z contains the updating row vector in the secular*         equation.**  DSIGMA (output) DOUBLE PRECISION array, dimension (N)*         Contains a copy of the diagonal elements (K-1 singular values*         and one zero) in the secular equation.**  U2     (output) DOUBLE PRECISION array, dimension(LDU2,N)*         Contains a copy of the first K-1 left singular vectors which*         will be used by DLASD3 in a matrix multiply (DGEMM) to solve*         for the new left singular vectors. U2 is arranged into four*         blocks. The first block contains a column with 1 at NL+1 and*         zero everywhere else; the second block contains non-zero*         entries only at and above NL; the third contains non-zero*         entries only below NL+1; and the fourth is dense.**  LDU2   (input) INTEGER*         The leading dimension of the array U2.  LDU2 >= N.**  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M)*         On entry VT' contains the right singular vectors of two*         submatrices in the two square blocks with corners at (1,1),*         (NL+1, NL+1), and (NL+2, NL+2), (M,M).*         On exit VT' contains the trailing (N-K) updated right singular*         vectors (those which were deflated) in its last N-K columns.*         In case SQRE =1, the last row of VT spans the right null*         space.**  LDVT   (input) INTEGER*         The leading dimension of the array VT.  LDVT >= M.**  VT2    (output) DOUBLE PRECISION array, dimension(LDVT2,N)*         VT2' contains a copy of the first K right singular vectors*         which will be used by DLASD3 in a matrix multiply (DGEMM) to*         solve for the new right singular vectors. VT2 is arranged into*         three blocks. The first block contains a row that corresponds*         to the special 0 diagonal element in SIGMA; the second block*         contains non-zeros only at and before NL +1; the third block*         contains non-zeros only at and after  NL +2.**  LDVT2  (input) INTEGER*         The leading dimension of the array VT2.  LDVT2 >= M.**  IDXP   (workspace) INTEGER array, dimension(N)*         This will contain the permutation used to place deflated*         values of D at the end of the array. On output IDXP(2:K)*         points to the nondeflated D-values and IDXP(K+1:N)*         points to the deflated singular values.**  IDX    (workspace) INTEGER array, dimension(N)*         This will contain the permutation used to sort the contents of*         D into ascending order.**  IDXC   (output) INTEGER array, dimension(N)*         This will contain the permutation used to arrange the columns*         of the deflated U matrix into three groups:  the first group*         contains non-zero entries only at and above NL, the second*         contains non-zero entries only below NL+2, and the third is*         dense.**  COLTYP (workspace/output) INTEGER array, dimension(N)*         As workspace, this will contain a label which will indicate*         which of the following types a column in the U2 matrix or a*         row in the VT2 matrix is:*         1 : non-zero in the upper half only*         2 : non-zero in the lower half only*         3 : dense*         4 : deflated**         On exit, it is an array of dimension 4, with COLTYP(I) being*         the dimension of the I-th type columns.**  IDXQ   (input) INTEGER array, dimension(N)*         This contains the permutation which separately sorts the two*         sub-problems in D into ascending order.  Note that entries in*         the first hlaf of this permutation must first be moved one*         position backward; and entries in the second half*         must first have NL+1 added to their values.**  INFO   (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.**  Further Details*  ===============**  Based on contributions by*     Ming Gu and Huan Ren, Computer Science Division, University of*     California at Berkeley, USA**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,     $                   EIGHT = 8.0D0 )*     ..*     .. Local Arrays ..      INTEGER            CTOT( 4 ), PSM( 4 )*     ..*     .. Local Scalars ..      INTEGER            CT, I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M,     $                   N, NLP1, NLP2      DOUBLE PRECISION   C, EPS, HLFTOL, S, TAU, TOL, Z1*     ..*     .. External Functions ..      DOUBLE PRECISION   DLAMCH, DLAPY2      EXTERNAL           DLAMCH, DLAPY2*     ..*     .. External Subroutines ..      EXTERNAL           DCOPY, DLACPY, DLAMRG, DLASET, DROT, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          DBLE, ABS, MAX*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( NL.LT.1 ) THEN         INFO = -1      ELSE IF( NR.LT.1 ) THEN         INFO = -2      ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN         INFO = -3      END IF*      N = NL + NR + 1      M = N + SQRE*      IF( LDU.LT.N ) THEN         INFO = -10      ELSE IF( LDVT.LT.M ) THEN         INFO = -12      ELSE IF( LDU2.LT.N ) THEN         INFO = -15      ELSE IF( LDVT2.LT.M ) THEN         INFO = -17      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLASD2', -INFO )         RETURN      END IF*      NLP1 = NL + 1      NLP2 = NL + 2**     Generate the first part of the vector Z; and move the singular*     values in the first part of D one position backward.*      OPS = OPS + DBLE( 1 + NL )      Z1 = ALPHA*VT( NLP1, NLP1 )      Z( 1 ) = Z1      DO 10 I = NL, 1, -1         Z( I+1 ) = ALPHA*VT( I, NLP1 )         D( I+1 ) = D( I )         IDXQ( I+1 ) = IDXQ( I ) + 1   10 CONTINUE**     Generate the second part of the vector Z.*      OPS = OPS + DBLE( M-NLP2+1 )      DO 20 I = NLP2, M         Z( I ) = BETA*VT( I, NLP2 )   20 CONTINUE**     Initialize some reference arrays.*      DO 30 I = 2, NLP1         COLTYP( I ) = 1   30 CONTINUE      DO 40 I = NLP2, N         COLTYP( I ) = 2   40 CONTINUE**     Sort the singular values into increasing order*      DO 50 I = NLP2, N         IDXQ( I ) = IDXQ( I ) + NLP1   50 CONTINUE*

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -