📄 slaed0.f
字号:
SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, $ WORK, IWORK, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* June 30, 1999** .. Scalar Arguments .. INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ* ..* .. Array Arguments .. INTEGER IWORK( * ) REAL D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ), $ WORK( * )* ..* Common block to return operation count and iteration count* ITCNT is unchanged, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** SLAED0 computes all eigenvalues and corresponding eigenvectors of a* symmetric tridiagonal matrix using the divide and conquer method.** Arguments* =========** ICOMPQ (input) INTEGER* = 0: Compute eigenvalues only.* = 1: Compute eigenvectors of original dense symmetric matrix* also. On entry, Q contains the orthogonal matrix used* to reduce the original matrix to tridiagonal form.* = 2: Compute eigenvalues and eigenvectors of tridiagonal* matrix.** QSIZ (input) INTEGER* The dimension of the orthogonal matrix used to reduce* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** D (input/output) REAL array, dimension (N)* On entry, the main diagonal of the tridiagonal matrix.* On exit, its eigenvalues.** E (input) REAL array, dimension (N-1)* The off-diagonal elements of the tridiagonal matrix.* On exit, E has been destroyed.** Q (input/output) REAL array, dimension (LDQ, N)* On entry, Q must contain an N-by-N orthogonal matrix.* If ICOMPQ = 0 Q is not referenced.* If ICOMPQ = 1 On entry, Q is a subset of the columns of the* orthogonal matrix used to reduce the full* matrix to tridiagonal form corresponding to* the subset of the full matrix which is being* decomposed at this time.* If ICOMPQ = 2 On entry, Q will be the identity matrix.* On exit, Q contains the eigenvectors of the* tridiagonal matrix.** LDQ (input) INTEGER* The leading dimension of the array Q. If eigenvectors are* desired, then LDQ >= max(1,N). In any case, LDQ >= 1.** QSTORE (workspace) REAL array, dimension (LDQS, N)* Referenced only when ICOMPQ = 1. Used to store parts of* the eigenvector matrix when the updating matrix multiplies* take place.** LDQS (input) INTEGER* The leading dimension of the array QSTORE. If ICOMPQ = 1,* then LDQS >= max(1,N). In any case, LDQS >= 1.** WORK (workspace) REAL array,* If ICOMPQ = 0 or 1, the dimension of WORK must be at least* 1 + 3*N + 2*N*lg N + 2*N**2* ( lg( N ) = smallest integer k* such that 2^k >= N )* If ICOMPQ = 2, the dimension of WORK must be at least* 4*N + N**2.** IWORK (workspace) INTEGER array,* If ICOMPQ = 0 or 1, the dimension of IWORK must be at least* 6 + 6*N + 5*N*lg N.* ( lg( N ) = smallest integer k* such that 2^k >= N )* If ICOMPQ = 2, the dimension of IWORK must be at least* 3 + 5*N.** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: The algorithm failed to compute an eigenvalue while* working on the submatrix lying in rows and columns* INFO/(N+1) through mod(INFO,N+1).** Further Details* ===============** Based on contributions by* Jeff Rutter, Computer Science Division, University of California* at Berkeley, USA** =====================================================================** .. Parameters .. REAL ZERO, ONE, TWO PARAMETER ( ZERO = 0.E0, ONE = 1.E0, TWO = 2.E0 )* ..* .. Local Scalars .. INTEGER CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM, $ IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM, $ J, K, LGN, MATSIZ, MSD2, SMLSIZ, SMM1, SPM1, $ SPM2, SUBMAT, SUBPBS, TLVLS REAL TEMP* ..* .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV* ..* .. External Subroutines .. EXTERNAL SCOPY, SGEMM, SLACPY, SLAED1, SLAED7, SSTEQR, $ XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, INT, LOG, MAX, REAL* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.2 ) THEN INFO = -1 ELSE IF( ( ICOMPQ.EQ.1 ) .AND. ( QSIZ.LT.MAX( 0, N ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAED0', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 ) $ RETURN* SMLSIZ = ILAENV( 9, 'SLAED0', ' ', 0, 0, 0, 0 )** Determine the size and placement of the submatrices, and save in* the leading elements of IWORK.* IWORK( 1 ) = N SUBPBS = 1 TLVLS = 0 10 CONTINUE IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN DO 20 J = SUBPBS, 1, -1 IWORK( 2*J ) = ( IWORK( J )+1 ) / 2 IWORK( 2*J-1 ) = IWORK( J ) / 2 20 CONTINUE TLVLS = TLVLS + 1 SUBPBS = 2*SUBPBS GO TO 10 END IF DO 30 J = 2, SUBPBS IWORK( J ) = IWORK( J ) + IWORK( J-1 ) 30 CONTINUE** Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1* using rank-1 modifications (cuts).* SPM1 = SUBPBS - 1 OPS = OPS + 2*SPM1 DO 40 I = 1, SPM1 SUBMAT = IWORK( I ) + 1 SMM1 = SUBMAT - 1 D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) ) D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) ) 40 CONTINUE* INDXQ = 4*N + 3 IF( ICOMPQ.NE.2 ) THEN** Set up workspaces for eigenvalues only/accumulate new vectors* routine* OPS = OPS + 3 TEMP = LOG( REAL( N ) ) / LOG( TWO ) LGN = INT( TEMP ) IF( 2**LGN.LT.N ) $ LGN = LGN + 1 IF( 2**LGN.LT.N ) $ LGN = LGN + 1 IPRMPT = INDXQ + N + 1 IPERM = IPRMPT + N*LGN IQPTR = IPERM + N*LGN IGIVPT = IQPTR + N + 2 IGIVCL = IGIVPT + N*LGN* IGIVNM = 1 IQ = IGIVNM + 2*N*LGN IWREM = IQ + N**2 + 1** Initialize pointers* DO 50 I = 0, SUBPBS IWORK( IPRMPT+I ) = 1 IWORK( IGIVPT+I ) = 1 50 CONTINUE IWORK( IQPTR ) = 1 END IF** Solve each submatrix eigenproblem at the bottom of the divide and* conquer tree.* CURR = 0 DO 70 I = 0, SPM1 IF( I.EQ.0 ) THEN SUBMAT = 1 MATSIZ = IWORK( 1 ) ELSE SUBMAT = IWORK( I ) + 1 MATSIZ = IWORK( I+1 ) - IWORK( I ) END IF IF( ICOMPQ.EQ.2 ) THEN CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ), $ Q( SUBMAT, SUBMAT ), LDQ, WORK, INFO ) IF( INFO.NE.0 ) $ GO TO 130 ELSE CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ), $ WORK( IQ-1+IWORK( IQPTR+CURR ) ), MATSIZ, WORK, $ INFO ) IF( INFO.NE.0 ) $ GO TO 130 IF( ICOMPQ.EQ.1 ) THEN OPS = OPS + 2*REAL( QSIZ )*MATSIZ*MATSIZ CALL SGEMM( 'N', 'N', QSIZ, MATSIZ, MATSIZ, ONE, $ Q( 1, SUBMAT ), LDQ, WORK( IQ-1+IWORK( IQPTR+ $ CURR ) ), MATSIZ, ZERO, QSTORE( 1, SUBMAT ), $ LDQS ) END IF IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2 CURR = CURR + 1 END IF K = 1 DO 60 J = SUBMAT, IWORK( I+1 ) IWORK( INDXQ+J ) = K K = K + 1 60 CONTINUE 70 CONTINUE** Successively merge eigensystems of adjacent submatrices* into eigensystem for the corresponding larger matrix.** while ( SUBPBS > 1 )* CURLVL = 1 80 CONTINUE IF( SUBPBS.GT.1 ) THEN SPM2 = SUBPBS - 2 DO 90 I = 0, SPM2, 2 IF( I.EQ.0 ) THEN SUBMAT = 1 MATSIZ = IWORK( 2 ) MSD2 = IWORK( 1 ) CURPRB = 0 ELSE SUBMAT = IWORK( I ) + 1 MATSIZ = IWORK( I+2 ) - IWORK( I ) MSD2 = MATSIZ / 2 CURPRB = CURPRB + 1 END IF** Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)* into an eigensystem of size MATSIZ.* SLAED1 is used only for the full eigensystem of a tridiagonal* matrix.* SLAED7 handles the cases in which eigenvalues only or eigenvalues* and eigenvectors of a full symmetric matrix (which was reduced to* tridiagonal form) are desired.* IF( ICOMPQ.EQ.2 ) THEN CALL SLAED1( MATSIZ, D( SUBMAT ), Q( SUBMAT, SUBMAT ), $ LDQ, IWORK( INDXQ+SUBMAT ), $ E( SUBMAT+MSD2-1 ), MSD2, WORK, $ IWORK( SUBPBS+1 ), INFO ) ELSE CALL SLAED7( ICOMPQ, MATSIZ, QSIZ, TLVLS, CURLVL, CURPRB, $ D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS, $ IWORK( INDXQ+SUBMAT ), E( SUBMAT+MSD2-1 ), $ MSD2, WORK( IQ ), IWORK( IQPTR ), $ IWORK( IPRMPT ), IWORK( IPERM ), $ IWORK( IGIVPT ), IWORK( IGIVCL ), $ WORK( IGIVNM ), WORK( IWREM ), $ IWORK( SUBPBS+1 ), INFO ) END IF IF( INFO.NE.0 ) $ GO TO 130 IWORK( I / 2+1 ) = IWORK( I+2 ) 90 CONTINUE SUBPBS = SUBPBS / 2 CURLVL = CURLVL + 1 GO TO 80 END IF** end while** Re-merge the eigenvalues/vectors which were deflated at the final* merge step.* IF( ICOMPQ.EQ.1 ) THEN DO 100 I = 1, N J = IWORK( INDXQ+I ) WORK( I ) = D( J ) CALL SCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 ) 100 CONTINUE CALL SCOPY( N, WORK, 1, D, 1 ) ELSE IF( ICOMPQ.EQ.2 ) THEN DO 110 I = 1, N J = IWORK( INDXQ+I ) WORK( I ) = D( J ) CALL SCOPY( N, Q( 1, J ), 1, WORK( N*I+1 ), 1 ) 110 CONTINUE CALL SCOPY( N, WORK, 1, D, 1 ) CALL SLACPY( 'A', N, N, WORK( N+1 ), N, Q, LDQ ) ELSE DO 120 I = 1, N J = IWORK( INDXQ+I ) WORK( I ) = D( J ) 120 CONTINUE CALL SCOPY( N, WORK, 1, D, 1 ) END IF GO TO 140* 130 CONTINUE INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1* 140 CONTINUE RETURN** End of SLAED0* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -