📄 chsein.f
字号:
SUBROUTINE CHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, $ LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, $ IFAILR, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* September 30, 1994** .. Scalar Arguments .. CHARACTER EIGSRC, INITV, SIDE INTEGER INFO, LDH, LDVL, LDVR, M, MM, N* ..* .. Array Arguments .. LOGICAL SELECT( * ) INTEGER IFAILL( * ), IFAILR( * ) REAL RWORK( * ) COMPLEX H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), $ W( * ), WORK( * )* ..* Common block to return operation count.* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** CHSEIN uses inverse iteration to find specified right and/or left* eigenvectors of a complex upper Hessenberg matrix H.** The right eigenvector x and the left eigenvector y of the matrix H* corresponding to an eigenvalue w are defined by:** H * x = w * x, y**h * H = w * y**h** where y**h denotes the conjugate transpose of the vector y.** Arguments* =========** SIDE (input) CHARACTER*1* = 'R': compute right eigenvectors only;* = 'L': compute left eigenvectors only;* = 'B': compute both right and left eigenvectors.** EIGSRC (input) CHARACTER*1* Specifies the source of eigenvalues supplied in W:* = 'Q': the eigenvalues were found using CHSEQR; thus, if* H has zero subdiagonal elements, and so is* block-triangular, then the j-th eigenvalue can be* assumed to be an eigenvalue of the block containing* the j-th row/column. This property allows CHSEIN to* perform inverse iteration on just one diagonal block.* = 'N': no assumptions are made on the correspondence* between eigenvalues and diagonal blocks. In this* case, CHSEIN must always perform inverse iteration* using the whole matrix H.** INITV (input) CHARACTER*1* = 'N': no initial vectors are supplied;* = 'U': user-supplied initial vectors are stored in the arrays* VL and/or VR.** SELECT (input) LOGICAL array, dimension (N)* Specifies the eigenvectors to be computed. To select the* eigenvector corresponding to the eigenvalue W(j),* SELECT(j) must be set to .TRUE..** N (input) INTEGER* The order of the matrix H. N >= 0.** H (input) COMPLEX array, dimension (LDH,N)* The upper Hessenberg matrix H.** LDH (input) INTEGER* The leading dimension of the array H. LDH >= max(1,N).** W (input/output) COMPLEX array, dimension (N)* On entry, the eigenvalues of H.* On exit, the real parts of W may have been altered since* close eigenvalues are perturbed slightly in searching for* independent eigenvectors.** VL (input/output) COMPLEX array, dimension (LDVL,MM)* On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must* contain starting vectors for the inverse iteration for the* left eigenvectors; the starting vector for each eigenvector* must be in the same column in which the eigenvector will be* stored.* On exit, if SIDE = 'L' or 'B', the left eigenvectors* specified by SELECT will be stored consecutively in the* columns of VL, in the same order as their eigenvalues.* If SIDE = 'R', VL is not referenced.** LDVL (input) INTEGER* The leading dimension of the array VL.* LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.** VR (input/output) COMPLEX array, dimension (LDVR,MM)* On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must* contain starting vectors for the inverse iteration for the* right eigenvectors; the starting vector for each eigenvector* must be in the same column in which the eigenvector will be* stored.* On exit, if SIDE = 'R' or 'B', the right eigenvectors* specified by SELECT will be stored consecutively in the* columns of VR, in the same order as their eigenvalues.* If SIDE = 'L', VR is not referenced.** LDVR (input) INTEGER* The leading dimension of the array VR.* LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.** MM (input) INTEGER* The number of columns in the arrays VL and/or VR. MM >= M.** M (output) INTEGER* The number of columns in the arrays VL and/or VR required to* store the eigenvectors (= the number of .TRUE. elements in* SELECT).** WORK (workspace) COMPLEX array, dimension (N*N)** RWORK (workspace) REAL array, dimension (N)** IFAILL (output) INTEGER array, dimension (MM)* If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left* eigenvector in the i-th column of VL (corresponding to the* eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the* eigenvector converged satisfactorily.* If SIDE = 'R', IFAILL is not referenced.** IFAILR (output) INTEGER array, dimension (MM)* If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right* eigenvector in the i-th column of VR (corresponding to the* eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the* eigenvector converged satisfactorily.* If SIDE = 'L', IFAILR is not referenced.** INFO (output) INTEGER* = 0: successful exit* < 0: if INFO = -i, the i-th argument had an illegal value* > 0: if INFO = i, i is the number of eigenvectors which* failed to converge; see IFAILL and IFAILR for further* details.** Further Details* ===============** Each eigenvector is normalized so that the element of largest* magnitude has magnitude 1; here the magnitude of a complex number* (x,y) is taken to be |x|+|y|.** =====================================================================** .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0E+0 )* ..* .. Local Scalars .. LOGICAL BOTHV, FROMQR, LEFTV, NOINIT, RIGHTV INTEGER I, IINFO, K, KL, KLN, KR, KS, LDWORK REAL EPS3, HNORM, OPST, SMLNUM, ULP, UNFL COMPLEX CDUM, WK* ..* .. External Functions .. LOGICAL LSAME REAL CLANHS, SLAMCH EXTERNAL LSAME, CLANHS, SLAMCH* ..* .. External Subroutines .. EXTERNAL CLAEIN, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL* ..* .. Statement Functions .. REAL CABS1* ..* .. Statement Function definitions .. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )* ..* .. Executable Statements ..** Decode and test the input parameters.* BOTHV = LSAME( SIDE, 'B' ) RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV* FROMQR = LSAME( EIGSRC, 'Q' )* NOINIT = LSAME( INITV, 'N' )** Set M to the number of columns required to store the selected* eigenvectors.* M = 0 DO 10 K = 1, N IF( SELECT( K ) ) $ M = M + 1 10 CONTINUE* INFO = 0 IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN INFO = -1 ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN INFO = -2 ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDH.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN INFO = -10 ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN INFO = -12 ELSE IF( MM.LT.M ) THEN INFO = -13 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHSEIN', -INFO ) RETURN END IF**** Initialize OPST = 0***** Quick return if possible.* IF( N.EQ.0 ) $ RETURN** Set machine-dependent constants.* UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Precision' ) SMLNUM = UNFL*( N / ULP )* LDWORK = N* KL = 1 KLN = 0 IF( FROMQR ) THEN KR = 0 ELSE KR = N END IF KS = 1* DO 100 K = 1, N IF( SELECT( K ) ) THEN** Compute eigenvector(s) corresponding to W(K).* IF( FROMQR ) THEN** If affiliation of eigenvalues is known, check whether* the matrix splits.** Determine KL and KR such that 1 <= KL <= K <= KR <= N* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or* KR = N).** Then inverse iteration can be performed with the* submatrix H(KL:N,KL:N) for a left eigenvector, and with* the submatrix H(1:KR,1:KR) for a right eigenvector.* DO 20 I = K, KL + 1, -1 IF( H( I, I-1 ).EQ.ZERO ) $ GO TO 30 20 CONTINUE 30 CONTINUE KL = I IF( K.GT.KR ) THEN DO 40 I = K, N - 1 IF( H( I+1, I ).EQ.ZERO ) $ GO TO 50 40 CONTINUE 50 CONTINUE KR = I END IF END IF* IF( KL.NE.KLN ) THEN KLN = KL** Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it* has not ben computed before.* HNORM = CLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, RWORK )**** Increment op count for computing the norm of the matrix OPS = OPS + 5*N*( N+1 ) / 2 + 4*( N-1 )*** IF( HNORM.GT.RZERO ) THEN EPS3 = HNORM*ULP ELSE EPS3 = SMLNUM END IF END IF** Perturb eigenvalue if it is close to any previous* selected eigenvalues affiliated to the submatrix* H(KL:KR,KL:KR). Close roots are modified by EPS3.* WK = W( K ) 60 CONTINUE DO 70 I = K - 1, KL, -1 IF( SELECT( I ) .AND. CABS1( W( I )-WK ).LT.EPS3 ) THEN WK = WK + EPS3 GO TO 60 END IF 70 CONTINUE W( K ) = WK**** Increment opcount for loop 70 OPST = OPST + 2*( K-1 )**** IF( LEFTV ) THEN** Compute left eigenvector.* CALL CLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH, $ WK, VL( KL, KS ), WORK, LDWORK, RWORK, EPS3, $ SMLNUM, IINFO ) IF( IINFO.GT.0 ) THEN INFO = INFO + 1 IFAILL( KS ) = K ELSE IFAILL( KS ) = 0 END IF DO 80 I = 1, KL - 1 VL( I, KS ) = ZERO 80 CONTINUE END IF IF( RIGHTV ) THEN** Compute right eigenvector.* CALL CLAEIN( .TRUE., NOINIT, KR, H, LDH, WK, VR( 1, KS ), $ WORK, LDWORK, RWORK, EPS3, SMLNUM, IINFO ) IF( IINFO.GT.0 ) THEN INFO = INFO + 1 IFAILR( KS ) = K ELSE IFAILR( KS ) = 0 END IF DO 90 I = KR + 1, N VR( I, KS ) = ZERO 90 CONTINUE END IF KS = KS + 1 END IF 100 CONTINUE***** Compute final op count OPS = OPS + OPST*** RETURN** End of CHSEIN* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -