📄 shsein.f
字号:
SUBROUTINE SHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, $ VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, $ IFAILR, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* September 30, 1994** .. Scalar Arguments .. CHARACTER EIGSRC, INITV, SIDE INTEGER INFO, LDH, LDVL, LDVR, M, MM, N* ..* .. Array Arguments .. LOGICAL SELECT( * ) INTEGER IFAILL( * ), IFAILR( * ) REAL H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), $ WI( * ), WORK( * ), WR( * )* ..* Common block to return operation count.* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** SHSEIN uses inverse iteration to find specified right and/or left* eigenvectors of a real upper Hessenberg matrix H.** The right eigenvector x and the left eigenvector y of the matrix H* corresponding to an eigenvalue w are defined by:** H * x = w * x, y**h * H = w * y**h** where y**h denotes the conjugate transpose of the vector y.** Arguments* =========** SIDE (input) CHARACTER*1* = 'R': compute right eigenvectors only;* = 'L': compute left eigenvectors only;* = 'B': compute both right and left eigenvectors.** EIGSRC (input) CHARACTER*1* Specifies the source of eigenvalues supplied in (WR,WI):* = 'Q': the eigenvalues were found using SHSEQR; thus, if* H has zero subdiagonal elements, and so is* block-triangular, then the j-th eigenvalue can be* assumed to be an eigenvalue of the block containing* the j-th row/column. This property allows SHSEIN to* perform inverse iteration on just one diagonal block.* = 'N': no assumptions are made on the correspondence* between eigenvalues and diagonal blocks. In this* case, SHSEIN must always perform inverse iteration* using the whole matrix H.** INITV (input) CHARACTER*1* = 'N': no initial vectors are supplied;* = 'U': user-supplied initial vectors are stored in the arrays* VL and/or VR.** SELECT (input/output) LOGICAL array, dimension(N)* Specifies the eigenvectors to be computed. To select the* real eigenvector corresponding to a real eigenvalue WR(j),* SELECT(j) must be set to .TRUE.. To select the complex* eigenvector corresponding to a complex eigenvalue* (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),* either SELECT(j) or SELECT(j+1) or both must be set to* .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is* .FALSE..** N (input) INTEGER* The order of the matrix H. N >= 0.** H (input) REAL array, dimension (LDH,N)* The upper Hessenberg matrix H.** LDH (input) INTEGER* The leading dimension of the array H. LDH >= max(1,N).** WR (input/output) REAL array, dimension (N)* WI (input) REAL array, dimension (N)* On entry, the real and imaginary parts of the eigenvalues of* H; a complex conjugate pair of eigenvalues must be stored in* consecutive elements of WR and WI.* On exit, WR may have been altered since close eigenvalues* are perturbed slightly in searching for independent* eigenvectors.** VL (input/output) REAL array, dimension (LDVL,MM)* On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must* contain starting vectors for the inverse iteration for the* left eigenvectors; the starting vector for each eigenvector* must be in the same column(s) in which the eigenvector will* be stored.* On exit, if SIDE = 'L' or 'B', the left eigenvectors* specified by SELECT will be stored consecutively in the* columns of VL, in the same order as their eigenvalues. A* complex eigenvector corresponding to a complex eigenvalue is* stored in two consecutive columns, the first holding the real* part and the second the imaginary part.* If SIDE = 'R', VL is not referenced.** LDVL (input) INTEGER* The leading dimension of the array VL.* LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.** VR (input/output) REAL array, dimension (LDVR,MM)* On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must* contain starting vectors for the inverse iteration for the* right eigenvectors; the starting vector for each eigenvector* must be in the same column(s) in which the eigenvector will* be stored.* On exit, if SIDE = 'R' or 'B', the right eigenvectors* specified by SELECT will be stored consecutively in the* columns of VR, in the same order as their eigenvalues. A* complex eigenvector corresponding to a complex eigenvalue is* stored in two consecutive columns, the first holding the real* part and the second the imaginary part.* If SIDE = 'L', VR is not referenced.** LDVR (input) INTEGER* The leading dimension of the array VR.* LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.** MM (input) INTEGER* The number of columns in the arrays VL and/or VR. MM >= M.** M (output) INTEGER* The number of columns in the arrays VL and/or VR required to* store the eigenvectors; each selected real eigenvector* occupies one column and each selected complex eigenvector* occupies two columns.** WORK (workspace) REAL array, dimension ((N+2)*N)** IFAILL (output) INTEGER array, dimension (MM)* If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left* eigenvector in the i-th column of VL (corresponding to the* eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the* eigenvector converged satisfactorily. If the i-th and (i+1)th* columns of VL hold a complex eigenvector, then IFAILL(i) and* IFAILL(i+1) are set to the same value.* If SIDE = 'R', IFAILL is not referenced.** IFAILR (output) INTEGER array, dimension (MM)* If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right* eigenvector in the i-th column of VR (corresponding to the* eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the* eigenvector converged satisfactorily. If the i-th and (i+1)th* columns of VR hold a complex eigenvector, then IFAILR(i) and* IFAILR(i+1) are set to the same value.* If SIDE = 'L', IFAILR is not referenced.** INFO (output) INTEGER* = 0: successful exit* < 0: if INFO = -i, the i-th argument had an illegal value* > 0: if INFO = i, i is the number of eigenvectors which* failed to converge; see IFAILL and IFAILR for further* details.** Further Details* ===============** Each eigenvector is normalized so that the element of largest* magnitude has magnitude 1; here the magnitude of a complex number* (x,y) is taken to be |x|+|y|.** =====================================================================** .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )* ..* .. Local Scalars .. LOGICAL BOTHV, FROMQR, LEFTV, NOINIT, PAIR, RIGHTV INTEGER I, IINFO, K, KL, KLN, KR, KSI, KSR, LDWORK REAL BIGNUM, EPS3, HNORM, OPST, SMLNUM, ULP, UNFL, $ WKI, WKR* ..* .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANHS EXTERNAL LSAME, SLAMCH, SLANHS* ..* .. External Subroutines .. EXTERNAL SLAEIN, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, MAX* ..* .. Executable Statements ..** Decode and test the input parameters.* BOTHV = LSAME( SIDE, 'B' ) RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV* FROMQR = LSAME( EIGSRC, 'Q' )* NOINIT = LSAME( INITV, 'N' )** Set M to the number of columns required to store the selected* eigenvectors, and standardize the array SELECT.* M = 0 PAIR = .FALSE. DO 10 K = 1, N IF( PAIR ) THEN PAIR = .FALSE. SELECT( K ) = .FALSE. ELSE IF( WI( K ).EQ.ZERO ) THEN IF( SELECT( K ) ) $ M = M + 1 ELSE PAIR = .TRUE. IF( SELECT( K ) .OR. SELECT( K+1 ) ) THEN SELECT( K ) = .TRUE. M = M + 2 END IF END IF END IF 10 CONTINUE* INFO = 0 IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN INFO = -1 ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN INFO = -2 ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDH.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN INFO = -11 ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN INFO = -13 ELSE IF( MM.LT.M ) THEN INFO = -14 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SHSEIN', -INFO ) RETURN END IF**** Initialize OPST = 0***** Quick return if possible.* IF( N.EQ.0 ) $ RETURN** Set machine-dependent constants.* UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Precision' ) SMLNUM = UNFL*( N / ULP ) BIGNUM = ( ONE-ULP ) / SMLNUM* LDWORK = N + 1* KL = 1 KLN = 0 IF( FROMQR ) THEN KR = 0 ELSE KR = N END IF KSR = 1* DO 120 K = 1, N IF( SELECT( K ) ) THEN** Compute eigenvector(s) corresponding to W(K).* IF( FROMQR ) THEN** If affiliation of eigenvalues is known, check whether* the matrix splits.** Determine KL and KR such that 1 <= KL <= K <= KR <= N* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or* KR = N).** Then inverse iteration can be performed with the* submatrix H(KL:N,KL:N) for a left eigenvector, and with* the submatrix H(1:KR,1:KR) for a right eigenvector.* DO 20 I = K, KL + 1, -1 IF( H( I, I-1 ).EQ.ZERO ) $ GO TO 30 20 CONTINUE 30 CONTINUE KL = I IF( K.GT.KR ) THEN DO 40 I = K, N - 1 IF( H( I+1, I ).EQ.ZERO ) $ GO TO 50 40 CONTINUE 50 CONTINUE KR = I END IF END IF* IF( KL.NE.KLN ) THEN KLN = KL** Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it* has not ben computed before.* HNORM = SLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, WORK )**** Increment opcount for computing the norm of matrix OPS = OPS + N*( N+1 ) / 2*** IF( HNORM.GT.ZERO ) THEN EPS3 = HNORM*ULP ELSE EPS3 = SMLNUM END IF END IF** Perturb eigenvalue if it is close to any previous* selected eigenvalues affiliated to the submatrix* H(KL:KR,KL:KR). Close roots are modified by EPS3.* WKR = WR( K ) WKI = WI( K ) 60 CONTINUE DO 70 I = K - 1, KL, -1 IF( SELECT( I ) .AND. ABS( WR( I )-WKR )+ $ ABS( WI( I )-WKI ).LT.EPS3 ) THEN WKR = WKR + EPS3 GO TO 60 END IF 70 CONTINUE WR( K ) = WKR**** Increment opcount for loop 70 OPST = OPST + 2*( K-KL )*** PAIR = WKI.NE.ZERO IF( PAIR ) THEN KSI = KSR + 1 ELSE KSI = KSR END IF IF( LEFTV ) THEN** Compute left eigenvector.* CALL SLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH, $ WKR, WKI, VL( KL, KSR ), VL( KL, KSI ), $ WORK, LDWORK, WORK( N*N+N+1 ), EPS3, SMLNUM, $ BIGNUM, IINFO ) IF( IINFO.GT.0 ) THEN IF( PAIR ) THEN INFO = INFO + 2 ELSE INFO = INFO + 1 END IF IFAILL( KSR ) = K IFAILL( KSI ) = K ELSE IFAILL( KSR ) = 0 IFAILL( KSI ) = 0 END IF DO 80 I = 1, KL - 1 VL( I, KSR ) = ZERO 80 CONTINUE IF( PAIR ) THEN DO 90 I = 1, KL - 1 VL( I, KSI ) = ZERO 90 CONTINUE END IF END IF IF( RIGHTV ) THEN** Compute right eigenvector.* CALL SLAEIN( .TRUE., NOINIT, KR, H, LDH, WKR, WKI, $ VR( 1, KSR ), VR( 1, KSI ), WORK, LDWORK, $ WORK( N*N+N+1 ), EPS3, SMLNUM, BIGNUM, $ IINFO ) IF( IINFO.GT.0 ) THEN IF( PAIR ) THEN INFO = INFO + 2 ELSE INFO = INFO + 1 END IF IFAILR( KSR ) = K IFAILR( KSI ) = K ELSE IFAILR( KSR ) = 0 IFAILR( KSI ) = 0 END IF DO 100 I = KR + 1, N VR( I, KSR ) = ZERO 100 CONTINUE IF( PAIR ) THEN DO 110 I = KR + 1, N VR( I, KSI ) = ZERO 110 CONTINUE END IF END IF* IF( PAIR ) THEN KSR = KSR + 2 ELSE KSR = KSR + 1 END IF END IF 120 CONTINUE***** Compute final op count OPS = OPS + OPST*** RETURN** End of SHSEIN* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -