📄 dlaed2.f
字号:
SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, $ Q2, INDX, INDXC, INDXP, COLTYP, INFO )** -- LAPACK routine (version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* October 31, 1999** .. Scalar Arguments .. INTEGER INFO, K, LDQ, N, N1 DOUBLE PRECISION RHO* ..* .. Array Arguments .. INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), $ INDXQ( * ) DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), $ W( * ), Z( * )* ..* Common block to return operation count and iteration count* ITCNT is unchanged, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. DOUBLE PRECISION ITCNT, OPS* ..** Purpose* =======** DLAED2 merges the two sets of eigenvalues together into a single* sorted set. Then it tries to deflate the size of the problem.* There are two ways in which deflation can occur: when two or more* eigenvalues are close together or if there is a tiny entry in the* Z vector. For each such occurrence the order of the related secular* equation problem is reduced by one.** Arguments* =========** K (output) INTEGER* The number of non-deflated eigenvalues, and the order of the* related secular equation. 0 <= K <=N.** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** N1 (input) INTEGER* The location of the last eigenvalue in the leading sub-matrix.* min(1,N) <= N1 <= N/2.** D (input/output) DOUBLE PRECISION array, dimension (N)* On entry, D contains the eigenvalues of the two submatrices to* be combined.* On exit, D contains the trailing (N-K) updated eigenvalues* (those which were deflated) sorted into increasing order.** Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)* On entry, Q contains the eigenvectors of two submatrices in* the two square blocks with corners at (1,1), (N1,N1)* and (N1+1, N1+1), (N,N).* On exit, Q contains the trailing (N-K) updated eigenvectors* (those which were deflated) in its last N-K columns.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max(1,N).** INDXQ (input/output) INTEGER array, dimension (N)* The permutation which separately sorts the two sub-problems* in D into ascending order. Note that elements in the second* half of this permutation must first have N1 added to their* values. Destroyed on exit.** RHO (input/output) DOUBLE PRECISION* On entry, the off-diagonal element associated with the rank-1* cut which originally split the two submatrices which are now* being recombined.* On exit, RHO has been modified to the value required by* DLAED3.** Z (input) DOUBLE PRECISION array, dimension (N)* On entry, Z contains the updating vector (the last* row of the first sub-eigenvector matrix and the first row of* the second sub-eigenvector matrix).* On exit, the contents of Z have been destroyed by the updating* process.** DLAMDA (output) DOUBLE PRECISION array, dimension (N)* A copy of the first K eigenvalues which will be used by* DLAED3 to form the secular equation.** W (output) DOUBLE PRECISION array, dimension (N)* The first k values of the final deflation-altered z-vector* which will be passed to DLAED3.** Q2 (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)* A copy of the first K eigenvectors which will be used by* DLAED3 in a matrix multiply (DGEMM) to solve for the new* eigenvectors.** INDX (workspace) INTEGER array, dimension (N)* The permutation used to sort the contents of DLAMDA into* ascending order.** INDXC (output) INTEGER array, dimension (N)* The permutation used to arrange the columns of the deflated* Q matrix into three groups: the first group contains non-zero* elements only at and above N1, the second contains* non-zero elements only below N1, and the third is dense.** INDXP (workspace) INTEGER array, dimension (N)* The permutation used to place deflated values of D at the end* of the array. INDXP(1:K) points to the nondeflated D-values* and INDXP(K+1:N) points to the deflated eigenvalues.** COLTYP (workspace/output) INTEGER array, dimension (N)* During execution, a label which will indicate which of the* following types a column in the Q2 matrix is:* 1 : non-zero in the upper half only;* 2 : dense;* 3 : non-zero in the lower half only;* 4 : deflated.* On exit, COLTYP(i) is the number of columns of type i,* for i=1 to 4 only.** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.** Further Details* ===============** Based on contributions by* Jeff Rutter, Computer Science Division, University of California* at Berkeley, USA* Modified by Francoise Tisseur, University of Tennessee.** =====================================================================** .. Parameters .. DOUBLE PRECISION MONE, ZERO, ONE, TWO, EIGHT PARAMETER ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0, $ TWO = 2.0D0, EIGHT = 8.0D0 )* ..* .. Local Arrays .. INTEGER CTOT( 4 ), PSM( 4 )* ..* .. Local Scalars .. INTEGER CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1, $ N2, NJ, PJ DOUBLE PRECISION C, EPS, S, T, TAU, TOL* ..* .. External Functions .. INTEGER IDAMAX DOUBLE PRECISION DLAMCH, DLAPY2 EXTERNAL IDAMAX, DLAMCH, DLAPY2* ..* .. External Subroutines .. EXTERNAL DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN INFO = -3 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAED2', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 ) $ RETURN* N2 = N - N1 N1P1 = N1 + 1* IF( RHO.LT.ZERO ) THEN OPS = OPS + N2 CALL DSCAL( N2, MONE, Z( N1P1 ), 1 ) END IF** Normalize z so that norm(z) = 1. Since z is the concatenation of* two normalized vectors, norm2(z) = sqrt(2).* OPS = OPS + N + 3 T = ONE / SQRT( TWO ) CALL DSCAL( N, T, Z, 1 )** RHO = ABS( norm(z)**2 * RHO )* RHO = ABS( TWO*RHO )** Sort the eigenvalues into increasing order* DO 10 I = N1P1, N INDXQ( I ) = INDXQ( I ) + N1 10 CONTINUE** re-integrate the deflated parts from the last pass* DO 20 I = 1, N DLAMDA( I ) = D( INDXQ( I ) ) 20 CONTINUE CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC ) DO 30 I = 1, N INDX( I ) = INDXQ( INDXC( I ) ) 30 CONTINUE** Calculate the allowable deflation tolerance* IMAX = IDAMAX( N, Z, 1 ) JMAX = IDAMAX( N, D, 1 ) EPS = DLAMCH( 'Epsilon' ) OPS = OPS + 2 TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )** If the rank-1 modifier is small enough, no more needs to be done* except to reorganize Q so that its columns correspond with the* elements in D.* OPS = OPS + 1 IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN K = 0 IQ2 = 1 DO 40 J = 1, N I = INDX( J ) CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 ) DLAMDA( J ) = D( I ) IQ2 = IQ2 + N 40 CONTINUE CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ ) CALL DCOPY( N, DLAMDA, 1, D, 1 ) GO TO 190 END IF** If there are multiple eigenvalues then the problem deflates. Here* the number of equal eigenvalues are found. As each equal* eigenvalue is found, an elementary reflector is computed to rotate* the corresponding eigensubspace so that the corresponding* components of Z are zero in this new basis.* DO 50 I = 1, N1 COLTYP( I ) = 1 50 CONTINUE DO 60 I = N1P1, N COLTYP( I ) = 3 60 CONTINUE** K = 0 K2 = N + 1 DO 70 J = 1, N NJ = INDX( J ) OPS = OPS + 1 IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN** Deflate due to small z component.* K2 = K2 - 1 COLTYP( NJ ) = 4 INDXP( K2 ) = NJ IF( J.EQ.N ) $ GO TO 100 ELSE PJ = NJ GO TO 80 END IF 70 CONTINUE 80 CONTINUE J = J + 1 NJ = INDX( J ) IF( J.GT.N ) $ GO TO 100 OPS = OPS + 1 IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN** Deflate due to small z component.* K2 = K2 - 1 COLTYP( NJ ) = 4 INDXP( K2 ) = NJ ELSE** Check if eigenvalues are close enough to allow deflation.* S = Z( PJ ) C = Z( NJ )** Find sqrt(a**2+b**2) without overflow or* destructive underflow.* OPS = OPS + 10 TAU = DLAPY2( C, S ) T = D( NJ ) - D( PJ ) C = C / TAU S = -S / TAU IF( ABS( T*C*S ).LE.TOL ) THEN** Deflation is possible.* Z( NJ ) = TAU Z( PJ ) = ZERO IF( COLTYP( NJ ).NE.COLTYP( PJ ) ) $ COLTYP( NJ ) = 2 COLTYP( PJ ) = 4 OPS = OPS + 6*N CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S ) OPS = OPS + 10 T = D( PJ )*C**2 + D( NJ )*S**2 D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2 D( PJ ) = T K2 = K2 - 1 I = 1 90 CONTINUE IF( K2+I.LE.N ) THEN IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN INDXP( K2+I-1 ) = INDXP( K2+I ) INDXP( K2+I ) = PJ I = I + 1 GO TO 90 ELSE INDXP( K2+I-1 ) = PJ END IF ELSE INDXP( K2+I-1 ) = PJ END IF PJ = NJ ELSE K = K + 1 DLAMDA( K ) = D( PJ ) W( K ) = Z( PJ ) INDXP( K ) = PJ PJ = NJ END IF END IF GO TO 80 100 CONTINUE** Record the last eigenvalue.* K = K + 1 DLAMDA( K ) = D( PJ ) W( K ) = Z( PJ ) INDXP( K ) = PJ** Count up the total number of the various types of columns, then* form a permutation which positions the four column types into* four uniform groups (although one or more of these groups may be* empty).* DO 110 J = 1, 4 CTOT( J ) = 0 110 CONTINUE DO 120 J = 1, N CT = COLTYP( J ) CTOT( CT ) = CTOT( CT ) + 1 120 CONTINUE** PSM(*) = Position in SubMatrix (of types 1 through 4)* PSM( 1 ) = 1 PSM( 2 ) = 1 + CTOT( 1 ) PSM( 3 ) = PSM( 2 ) + CTOT( 2 ) PSM( 4 ) = PSM( 3 ) + CTOT( 3 ) K = N - CTOT( 4 )** Fill out the INDXC array so that the permutation which it induces* will place all type-1 columns first, all type-2 columns next,* then all type-3's, and finally all type-4's.* DO 130 J = 1, N JS = INDXP( J ) CT = COLTYP( JS ) INDX( PSM( CT ) ) = JS INDXC( PSM( CT ) ) = J PSM( CT ) = PSM( CT ) + 1 130 CONTINUE** Sort the eigenvalues and corresponding eigenvectors into DLAMDA* and Q2 respectively. The eigenvalues/vectors which were not* deflated go into the first K slots of DLAMDA and Q2 respectively,* while those which were deflated go into the last N - K slots.* I = 1 IQ1 = 1 IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1 DO 140 J = 1, CTOT( 1 ) JS = INDX( I ) CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 ) Z( I ) = D( JS ) I = I + 1 IQ1 = IQ1 + N1 140 CONTINUE* DO 150 J = 1, CTOT( 2 ) JS = INDX( I ) CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 ) CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 ) Z( I ) = D( JS ) I = I + 1 IQ1 = IQ1 + N1 IQ2 = IQ2 + N2 150 CONTINUE* DO 160 J = 1, CTOT( 3 ) JS = INDX( I ) CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 ) Z( I ) = D( JS ) I = I + 1 IQ2 = IQ2 + N2 160 CONTINUE* IQ1 = IQ2 DO 170 J = 1, CTOT( 4 ) JS = INDX( I ) CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 ) IQ2 = IQ2 + N Z( I ) = D( JS ) I = I + 1 170 CONTINUE** The deflated eigenvalues and their corresponding vectors go back* into the last N - K slots of D and Q respectively.* CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N, Q( 1, K+1 ), LDQ ) CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )** Copy CTOT into COLTYP for referencing in DLAED3.* DO 180 J = 1, 4 COLTYP( J ) = CTOT( J ) 180 CONTINUE* 190 CONTINUE RETURN** End of DLAED2* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -