⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlaed2.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,     $                   Q2, INDX, INDXC, INDXP, COLTYP, INFO )**  -- LAPACK routine (version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999**     .. Scalar Arguments ..      INTEGER            INFO, K, LDQ, N, N1      DOUBLE PRECISION   RHO*     ..*     .. Array Arguments ..      INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),     $                   INDXQ( * )      DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),     $                   W( * ), Z( * )*     ..*     Common block to return operation count and iteration count*     ITCNT is unchanged, OPS is only incremented*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLAED2 merges the two sets of eigenvalues together into a single*  sorted set.  Then it tries to deflate the size of the problem.*  There are two ways in which deflation can occur:  when two or more*  eigenvalues are close together or if there is a tiny entry in the*  Z vector.  For each such occurrence the order of the related secular*  equation problem is reduced by one.**  Arguments*  =========**  K      (output) INTEGER*         The number of non-deflated eigenvalues, and the order of the*         related secular equation. 0 <= K <=N.**  N      (input) INTEGER*         The dimension of the symmetric tridiagonal matrix.  N >= 0.**  N1     (input) INTEGER*         The location of the last eigenvalue in the leading sub-matrix.*         min(1,N) <= N1 <= N/2.**  D      (input/output) DOUBLE PRECISION array, dimension (N)*         On entry, D contains the eigenvalues of the two submatrices to*         be combined.*         On exit, D contains the trailing (N-K) updated eigenvalues*         (those which were deflated) sorted into increasing order.**  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)*         On entry, Q contains the eigenvectors of two submatrices in*         the two square blocks with corners at (1,1), (N1,N1)*         and (N1+1, N1+1), (N,N).*         On exit, Q contains the trailing (N-K) updated eigenvectors*         (those which were deflated) in its last N-K columns.**  LDQ    (input) INTEGER*         The leading dimension of the array Q.  LDQ >= max(1,N).**  INDXQ  (input/output) INTEGER array, dimension (N)*         The permutation which separately sorts the two sub-problems*         in D into ascending order.  Note that elements in the second*         half of this permutation must first have N1 added to their*         values. Destroyed on exit.**  RHO    (input/output) DOUBLE PRECISION*         On entry, the off-diagonal element associated with the rank-1*         cut which originally split the two submatrices which are now*         being recombined.*         On exit, RHO has been modified to the value required by*         DLAED3.**  Z      (input) DOUBLE PRECISION array, dimension (N)*         On entry, Z contains the updating vector (the last*         row of the first sub-eigenvector matrix and the first row of*         the second sub-eigenvector matrix).*         On exit, the contents of Z have been destroyed by the updating*         process.**  DLAMDA (output) DOUBLE PRECISION array, dimension (N)*         A copy of the first K eigenvalues which will be used by*         DLAED3 to form the secular equation.**  W      (output) DOUBLE PRECISION array, dimension (N)*         The first k values of the final deflation-altered z-vector*         which will be passed to DLAED3.**  Q2     (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)*         A copy of the first K eigenvectors which will be used by*         DLAED3 in a matrix multiply (DGEMM) to solve for the new*         eigenvectors.**  INDX   (workspace) INTEGER array, dimension (N)*         The permutation used to sort the contents of DLAMDA into*         ascending order.**  INDXC  (output) INTEGER array, dimension (N)*         The permutation used to arrange the columns of the deflated*         Q matrix into three groups:  the first group contains non-zero*         elements only at and above N1, the second contains*         non-zero elements only below N1, and the third is dense.**  INDXP  (workspace) INTEGER array, dimension (N)*         The permutation used to place deflated values of D at the end*         of the array.  INDXP(1:K) points to the nondeflated D-values*         and INDXP(K+1:N) points to the deflated eigenvalues.**  COLTYP (workspace/output) INTEGER array, dimension (N)*         During execution, a label which will indicate which of the*         following types a column in the Q2 matrix is:*         1 : non-zero in the upper half only;*         2 : dense;*         3 : non-zero in the lower half only;*         4 : deflated.*         On exit, COLTYP(i) is the number of columns of type i,*         for i=1 to 4 only.**  INFO   (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.**  Further Details*  ===============**  Based on contributions by*     Jeff Rutter, Computer Science Division, University of California*     at Berkeley, USA*  Modified by Francoise Tisseur, University of Tennessee.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT      PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,     $                   TWO = 2.0D0, EIGHT = 8.0D0 )*     ..*     .. Local Arrays ..      INTEGER            CTOT( 4 ), PSM( 4 )*     ..*     .. Local Scalars ..      INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,     $                   N2, NJ, PJ      DOUBLE PRECISION   C, EPS, S, T, TAU, TOL*     ..*     .. External Functions ..      INTEGER            IDAMAX      DOUBLE PRECISION   DLAMCH, DLAPY2      EXTERNAL           IDAMAX, DLAMCH, DLAPY2*     ..*     .. External Subroutines ..      EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, MAX, MIN, SQRT*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN         INFO = -6      ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN         INFO = -3      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLAED2', -INFO )         RETURN      END IF**     Quick return if possible*      IF( N.EQ.0 )     $   RETURN*      N2 = N - N1      N1P1 = N1 + 1*      IF( RHO.LT.ZERO ) THEN         OPS = OPS + N2         CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )      END IF**     Normalize z so that norm(z) = 1.  Since z is the concatenation of*     two normalized vectors, norm2(z) = sqrt(2).*      OPS = OPS + N + 3      T = ONE / SQRT( TWO )      CALL DSCAL( N, T, Z, 1 )**     RHO = ABS( norm(z)**2 * RHO )*      RHO = ABS( TWO*RHO )**     Sort the eigenvalues into increasing order*      DO 10 I = N1P1, N         INDXQ( I ) = INDXQ( I ) + N1   10 CONTINUE**     re-integrate the deflated parts from the last pass*      DO 20 I = 1, N         DLAMDA( I ) = D( INDXQ( I ) )   20 CONTINUE      CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )      DO 30 I = 1, N         INDX( I ) = INDXQ( INDXC( I ) )   30 CONTINUE**     Calculate the allowable deflation tolerance*      IMAX = IDAMAX( N, Z, 1 )      JMAX = IDAMAX( N, D, 1 )      EPS = DLAMCH( 'Epsilon' )      OPS = OPS + 2      TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )**     If the rank-1 modifier is small enough, no more needs to be done*     except to reorganize Q so that its columns correspond with the*     elements in D.*      OPS = OPS + 1      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN         K = 0         IQ2 = 1         DO 40 J = 1, N            I = INDX( J )            CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )            DLAMDA( J ) = D( I )            IQ2 = IQ2 + N   40    CONTINUE         CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )         CALL DCOPY( N, DLAMDA, 1, D, 1 )         GO TO 190      END IF**     If there are multiple eigenvalues then the problem deflates.  Here*     the number of equal eigenvalues are found.  As each equal*     eigenvalue is found, an elementary reflector is computed to rotate*     the corresponding eigensubspace so that the corresponding*     components of Z are zero in this new basis.*      DO 50 I = 1, N1         COLTYP( I ) = 1   50 CONTINUE      DO 60 I = N1P1, N         COLTYP( I ) = 3   60 CONTINUE**      K = 0      K2 = N + 1      DO 70 J = 1, N         NJ = INDX( J )         OPS = OPS + 1         IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN**           Deflate due to small z component.*            K2 = K2 - 1            COLTYP( NJ ) = 4            INDXP( K2 ) = NJ            IF( J.EQ.N )     $         GO TO 100         ELSE            PJ = NJ            GO TO 80         END IF   70 CONTINUE   80 CONTINUE      J = J + 1      NJ = INDX( J )      IF( J.GT.N )     $   GO TO 100      OPS = OPS + 1      IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN**        Deflate due to small z component.*         K2 = K2 - 1         COLTYP( NJ ) = 4         INDXP( K2 ) = NJ      ELSE**        Check if eigenvalues are close enough to allow deflation.*         S = Z( PJ )         C = Z( NJ )**        Find sqrt(a**2+b**2) without overflow or*        destructive underflow.*         OPS = OPS + 10         TAU = DLAPY2( C, S )         T = D( NJ ) - D( PJ )         C = C / TAU         S = -S / TAU         IF( ABS( T*C*S ).LE.TOL ) THEN**           Deflation is possible.*            Z( NJ ) = TAU            Z( PJ ) = ZERO            IF( COLTYP( NJ ).NE.COLTYP( PJ ) )     $         COLTYP( NJ ) = 2            COLTYP( PJ ) = 4            OPS = OPS + 6*N            CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )            OPS = OPS + 10            T = D( PJ )*C**2 + D( NJ )*S**2            D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2            D( PJ ) = T            K2 = K2 - 1            I = 1   90       CONTINUE            IF( K2+I.LE.N ) THEN               IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN                  INDXP( K2+I-1 ) = INDXP( K2+I )                  INDXP( K2+I ) = PJ                  I = I + 1                  GO TO 90               ELSE                  INDXP( K2+I-1 ) = PJ               END IF            ELSE               INDXP( K2+I-1 ) = PJ            END IF            PJ = NJ         ELSE            K = K + 1            DLAMDA( K ) = D( PJ )            W( K ) = Z( PJ )            INDXP( K ) = PJ            PJ = NJ         END IF      END IF      GO TO 80  100 CONTINUE**     Record the last eigenvalue.*      K = K + 1      DLAMDA( K ) = D( PJ )      W( K ) = Z( PJ )      INDXP( K ) = PJ**     Count up the total number of the various types of columns, then*     form a permutation which positions the four column types into*     four uniform groups (although one or more of these groups may be*     empty).*      DO 110 J = 1, 4         CTOT( J ) = 0  110 CONTINUE      DO 120 J = 1, N         CT = COLTYP( J )         CTOT( CT ) = CTOT( CT ) + 1  120 CONTINUE**     PSM(*) = Position in SubMatrix (of types 1 through 4)*      PSM( 1 ) = 1      PSM( 2 ) = 1 + CTOT( 1 )      PSM( 3 ) = PSM( 2 ) + CTOT( 2 )      PSM( 4 ) = PSM( 3 ) + CTOT( 3 )      K = N - CTOT( 4 )**     Fill out the INDXC array so that the permutation which it induces*     will place all type-1 columns first, all type-2 columns next,*     then all type-3's, and finally all type-4's.*      DO 130 J = 1, N         JS = INDXP( J )         CT = COLTYP( JS )         INDX( PSM( CT ) ) = JS         INDXC( PSM( CT ) ) = J         PSM( CT ) = PSM( CT ) + 1  130 CONTINUE**     Sort the eigenvalues and corresponding eigenvectors into DLAMDA*     and Q2 respectively.  The eigenvalues/vectors which were not*     deflated go into the first K slots of DLAMDA and Q2 respectively,*     while those which were deflated go into the last N - K slots.*      I = 1      IQ1 = 1      IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1      DO 140 J = 1, CTOT( 1 )         JS = INDX( I )         CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )         Z( I ) = D( JS )         I = I + 1         IQ1 = IQ1 + N1  140 CONTINUE*      DO 150 J = 1, CTOT( 2 )         JS = INDX( I )         CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )         CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )         Z( I ) = D( JS )         I = I + 1         IQ1 = IQ1 + N1         IQ2 = IQ2 + N2  150 CONTINUE*      DO 160 J = 1, CTOT( 3 )         JS = INDX( I )         CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )         Z( I ) = D( JS )         I = I + 1         IQ2 = IQ2 + N2  160 CONTINUE*      IQ1 = IQ2      DO 170 J = 1, CTOT( 4 )         JS = INDX( I )         CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )         IQ2 = IQ2 + N         Z( I ) = D( JS )         I = I + 1  170 CONTINUE**     The deflated eigenvalues and their corresponding vectors go back*     into the last N - K slots of D and Q respectively.*      CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N, Q( 1, K+1 ), LDQ )      CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )**     Copy CTOT into COLTYP for referencing in DLAED3.*      DO 180 J = 1, 4         COLTYP( J ) = CTOT( J )  180 CONTINUE*  190 CONTINUE      RETURN**     End of DLAED2*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -