⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlaed9.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,     $                   S, LDS, INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,*     Courant Institute, NAG Ltd., and Rice University*     September 30, 1994**     .. Scalar Arguments ..      INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N      DOUBLE PRECISION   RHO*     ..*     .. Array Arguments ..      DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),     $                   W( * )*     ..*     Common block to return operation count and iteration count*     ITCNT is unchanged, OPS is only incremented*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLAED9 finds the roots of the secular equation, as defined by the*  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the*  appropriate calls to DLAED4 and then stores the new matrix of*  eigenvectors for use in calculating the next level of Z vectors.**  Arguments*  =========**  K       (input) INTEGER*          The number of terms in the rational function to be solved by*          DLAED4.  K >= 0.**  KSTART  (input) INTEGER*  KSTOP   (input) INTEGER*          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP*          are to be computed.  1 <= KSTART <= KSTOP <= K.**  N       (input) INTEGER*          The number of rows and columns in the Q matrix.*          N >= K (delation may result in N > K).**  D       (output) DOUBLE PRECISION array, dimension (N)*          D(I) contains the updated eigenvalues*          for KSTART <= I <= KSTOP.**  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N)**  LDQ     (input) INTEGER*          The leading dimension of the array Q.  LDQ >= max( 1, N ).**  RHO     (input) DOUBLE PRECISION*          The value of the parameter in the rank one update equation.*          RHO >= 0 required.**  DLAMDA  (input) DOUBLE PRECISION array, dimension (K)*          The first K elements of this array contain the old roots*          of the deflated updating problem.  These are the poles*          of the secular equation.**  W       (input) DOUBLE PRECISION array, dimension (K)*          The first K elements of this array contain the components*          of the deflation-adjusted updating vector.**  S       (output) DOUBLE PRECISION array, dimension (LDS, K)*          Will contain the eigenvectors of the repaired matrix which*          will be stored for subsequent Z vector calculation and*          multiplied by the previously accumulated eigenvectors*          to update the system.**  LDS     (input) INTEGER*          The leading dimension of S.  LDS >= max( 1, K ).**  INFO    (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = 1, an eigenvalue did not converge**  Further Details*  ===============**  Based on contributions by*     Jeff Rutter, Computer Science Division, University of California*     at Berkeley, USA**  =====================================================================**     .. Local Scalars ..      INTEGER            I, J      DOUBLE PRECISION   TEMP*     ..*     .. External Functions ..      DOUBLE PRECISION   DLAMC3, DNRM2      EXTERNAL           DLAMC3, DNRM2*     ..*     .. External Subroutines ..      EXTERNAL           DCOPY, DLAED4, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX, SIGN, SQRT*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( K.LT.0 ) THEN         INFO = -1      ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN         INFO = -2      ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) )     $          THEN         INFO = -3      ELSE IF( N.LT.K ) THEN         INFO = -4      ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN         INFO = -7      ELSE IF( LDS.LT.MAX( 1, K ) ) THEN         INFO = -12      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLAED9', -INFO )         RETURN      END IF**     Quick return if possible*      IF( K.EQ.0 )     $   RETURN**     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can*     be computed with high relative accuracy (barring over/underflow).*     This is a problem on machines without a guard digit in*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),*     which on any of these machines zeros out the bottommost*     bit of DLAMDA(I) if it is 1; this makes the subsequent*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation*     occurs. On binary machines with a guard digit (almost all*     machines) it does not change DLAMDA(I) at all. On hexadecimal*     and decimal machines with a guard digit, it slightly*     changes the bottommost bits of DLAMDA(I). It does not account*     for hexadecimal or decimal machines without guard digits*     (we know of none). We use a subroutine call to compute*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating*     this code.*      OPS = OPS + 2*N      DO 10 I = 1, N         DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )   10 CONTINUE*      DO 20 J = KSTART, KSTOP         CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )**        If the zero finder fails, the computation is terminated.*         IF( INFO.NE.0 )     $      GO TO 120   20 CONTINUE*      IF( K.EQ.1 .OR. K.EQ.2 ) THEN         DO 40 I = 1, K            DO 30 J = 1, K               S( J, I ) = Q( J, I )   30       CONTINUE   40    CONTINUE         GO TO 120      END IF**     Compute updated W.*      CALL DCOPY( K, W, 1, S, 1 )**     Initialize W(I) = Q(I,I)*      CALL DCOPY( K, Q, LDQ+1, W, 1 )      OPS = OPS + 3*K*( K-1 ) + K      DO 70 J = 1, K         DO 50 I = 1, J - 1            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )   50    CONTINUE         DO 60 I = J + 1, K            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )   60    CONTINUE   70 CONTINUE      DO 80 I = 1, K         W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) )   80 CONTINUE**     Compute eigenvectors of the modified rank-1 modification.*      OPS = OPS + 4*K*K      DO 110 J = 1, K         DO 90 I = 1, K            Q( I, J ) = W( I ) / Q( I, J )   90    CONTINUE         TEMP = DNRM2( K, Q( 1, J ), 1 )         DO 100 I = 1, K            S( I, J ) = Q( I, J ) / TEMP  100    CONTINUE  110 CONTINUE*  120 CONTINUE      RETURN**     End of DLAED9*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -