📄 shgeqz.f
字号:
SUBROUTINE SHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, $ LWORK, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* June 30, 1999** .. Scalar Arguments .. CHARACTER COMPQ, COMPZ, JOB INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, LWORK, N* ..* .. Array Arguments .. REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), $ B( LDB, * ), BETA( * ), Q( LDQ, * ), WORK( * ), $ Z( LDZ, * )* ..* ---------------------- Begin Timing Code -------------------------* Common block to return operation count and iteration count* ITCNT is initialized to 0, OPS is only incremented* OPST is used to accumulate small contributions to OPS* to avoid roundoff error* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..* ----------------------- End Timing Code --------------------------** Purpose* =======** SHGEQZ implements a single-/double-shift version of the QZ method for* finding the generalized eigenvalues** w(j)=(ALPHAR(j) + i*ALPHAI(j))/BETAR(j) of the equation** det( A - w(i) B ) = 0** In addition, the pair A,B may be reduced to generalized Schur form:* B is upper triangular, and A is block upper triangular, where the* diagonal blocks are either 1-by-1 or 2-by-2, the 2-by-2 blocks having* complex generalized eigenvalues (see the description of the argument* JOB.)** If JOB='S', then the pair (A,B) is simultaneously reduced to Schur* form by applying one orthogonal tranformation (usually called Q) on* the left and another (usually called Z) on the right. The 2-by-2* upper-triangular diagonal blocks of B corresponding to 2-by-2 blocks* of A will be reduced to positive diagonal matrices. (I.e.,* if A(j+1,j) is non-zero, then B(j+1,j)=B(j,j+1)=0 and B(j,j) and* B(j+1,j+1) will be positive.)** If JOB='E', then at each iteration, the same transformations* are computed, but they are only applied to those parts of A and B* which are needed to compute ALPHAR, ALPHAI, and BETAR.** If JOB='S' and COMPQ and COMPZ are 'V' or 'I', then the orthogonal* transformations used to reduce (A,B) are accumulated into the arrays* Q and Z s.t.:** Q(in) A(in) Z(in)* = Q(out) A(out) Z(out)** Q(in) B(in) Z(in)* = Q(out) B(out) Z(out)*** Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),* pp. 241--256.** Arguments* =========** JOB (input) CHARACTER*1* = 'E': compute only ALPHAR, ALPHAI, and BETA. A and B will* not necessarily be put into generalized Schur form.* = 'S': put A and B into generalized Schur form, as well* as computing ALPHAR, ALPHAI, and BETA.** COMPQ (input) CHARACTER*1* = 'N': do not modify Q.* = 'V': multiply the array Q on the right by the transpose of* the orthogonal tranformation that is applied to the* left side of A and B to reduce them to Schur form.* = 'I': like COMPQ='V', except that Q will be initialized to* the identity first.** COMPZ (input) CHARACTER*1* = 'N': do not modify Z.* = 'V': multiply the array Z on the right by the orthogonal* tranformation that is applied to the right side of* A and B to reduce them to Schur form.* = 'I': like COMPZ='V', except that Z will be initialized to* the identity first.** N (input) INTEGER* The order of the matrices A, B, Q, and Z. N >= 0.** ILO (input) INTEGER* IHI (input) INTEGER* It is assumed that A is already upper triangular in rows and* columns 1:ILO-1 and IHI+1:N.* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.** A (input/output) REAL array, dimension (LDA, N)* On entry, the N-by-N upper Hessenberg matrix A. Elements* below the subdiagonal must be zero.* If JOB='S', then on exit A and B will have been* simultaneously reduced to generalized Schur form.* If JOB='E', then on exit A will have been destroyed.* The diagonal blocks will be correct, but the off-diagonal* portion will be meaningless.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max( 1, N ).** B (input/output) REAL array, dimension (LDB, N)* On entry, the N-by-N upper triangular matrix B. Elements* below the diagonal must be zero. 2-by-2 blocks in B* corresponding to 2-by-2 blocks in A will be reduced to* positive diagonal form. (I.e., if A(j+1,j) is non-zero,* then B(j+1,j)=B(j,j+1)=0 and B(j,j) and B(j+1,j+1) will be* positive.)* If JOB='S', then on exit A and B will have been* simultaneously reduced to Schur form.* If JOB='E', then on exit B will have been destroyed.* Elements corresponding to diagonal blocks of A will be* correct, but the off-diagonal portion will be meaningless.** LDB (input) INTEGER* The leading dimension of the array B. LDB >= max( 1, N ).** ALPHAR (output) REAL array, dimension (N)* ALPHAR(1:N) will be set to real parts of the diagonal* elements of A that would result from reducing A and B to* Schur form and then further reducing them both to triangular* form using unitary transformations s.t. the diagonal of B* was non-negative real. Thus, if A(j,j) is in a 1-by-1 block* (i.e., A(j+1,j)=A(j,j+1)=0), then ALPHAR(j)=A(j,j).* Note that the (real or complex) values* (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the* generalized eigenvalues of the matrix pencil A - wB.** ALPHAI (output) REAL array, dimension (N)* ALPHAI(1:N) will be set to imaginary parts of the diagonal* elements of A that would result from reducing A and B to* Schur form and then further reducing them both to triangular* form using unitary transformations s.t. the diagonal of B* was non-negative real. Thus, if A(j,j) is in a 1-by-1 block* (i.e., A(j+1,j)=A(j,j+1)=0), then ALPHAR(j)=0.* Note that the (real or complex) values* (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the* generalized eigenvalues of the matrix pencil A - wB.** BETA (output) REAL array, dimension (N)* BETA(1:N) will be set to the (real) diagonal elements of B* that would result from reducing A and B to Schur form and* then further reducing them both to triangular form using* unitary transformations s.t. the diagonal of B was* non-negative real. Thus, if A(j,j) is in a 1-by-1 block* (i.e., A(j+1,j)=A(j,j+1)=0), then BETA(j)=B(j,j).* Note that the (real or complex) values* (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the* generalized eigenvalues of the matrix pencil A - wB.* (Note that BETA(1:N) will always be non-negative, and no* BETAI is necessary.)** Q (input/output) REAL array, dimension (LDQ, N)* If COMPQ='N', then Q will not be referenced.* If COMPQ='V' or 'I', then the transpose of the orthogonal* transformations which are applied to A and B on the left* will be applied to the array Q on the right.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= 1.* If COMPQ='V' or 'I', then LDQ >= N.** Z (input/output) REAL array, dimension (LDZ, N)* If COMPZ='N', then Z will not be referenced.* If COMPZ='V' or 'I', then the orthogonal transformations* which are applied to A and B on the right will be applied* to the array Z on the right.** LDZ (input) INTEGER* The leading dimension of the array Z. LDZ >= 1.* If COMPZ='V' or 'I', then LDZ >= N.** WORK (workspace/output) REAL array, dimension (LWORK)* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.** LWORK (input) INTEGER* The dimension of the array WORK. LWORK >= max(1,N).** If LWORK = -1, then a workspace query is assumed; the routine* only calculates the optimal size of the WORK array, returns* this value as the first entry of the WORK array, and no error* message related to LWORK is issued by XERBLA.** INFO (output) INTEGER* = 0: successful exit* < 0: if INFO = -i, the i-th argument had an illegal value* = 1,...,N: the QZ iteration did not converge. (A,B) is not* in Schur form, but ALPHAR(i), ALPHAI(i), and* BETA(i), i=INFO+1,...,N should be correct.* = N+1,...,2*N: the shift calculation failed. (A,B) is not* in Schur form, but ALPHAR(i), ALPHAI(i), and* BETA(i), i=INFO-N+1,...,N should be correct.* > 2*N: various "impossible" errors.** Further Details* ===============** Iteration counters:** JITER -- counts iterations.* IITER -- counts iterations run since ILAST was last* changed. This is therefore reset only when a 1-by-1 or* 2-by-2 block deflates off the bottom.** =====================================================================** .. Parameters .. REAL HALF, ZERO, ONE, SAFETY PARAMETER ( HALF = 0.5E+0, ZERO = 0.0E+0, ONE = 1.0E+0, $ SAFETY = 1.0E+2 )* ..* .. Local Scalars .. LOGICAL ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ, $ LQUERY INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST, $ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER, $ JR, MAXIT, NQ, NZ REAL A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11, $ AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L, $ AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I, $ B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE, $ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL, $ CQ, CR, CZ, ESHIFT, OPST, S, S1, S1INV, S2, $ SAFMAX, SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, $ SZR, T, TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, $ U12, U12L, U2, ULP, VS, W11, W12, W21, W22, $ WABS, WI, WR, WR2* ..* .. Local Arrays .. REAL V( 3 )* ..* .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANHS, SLAPY2, SLAPY3 EXTERNAL LSAME, SLAMCH, SLANHS, SLAPY2, SLAPY3* ..* .. External Subroutines .. EXTERNAL SLAG2, SLARFG, SLARTG, SLASET, SLASV2, SROT, $ XERBLA* ..* .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL, SQRT* ..* .. Executable Statements ..** Decode JOB, COMPQ, COMPZ* IF( LSAME( JOB, 'E' ) ) THEN ILSCHR = .FALSE. ISCHUR = 1 ELSE IF( LSAME( JOB, 'S' ) ) THEN ILSCHR = .TRUE. ISCHUR = 2 ELSE ISCHUR = 0 END IF* IF( LSAME( COMPQ, 'N' ) ) THEN ILQ = .FALSE. ICOMPQ = 1 NQ = 0 ELSE IF( LSAME( COMPQ, 'V' ) ) THEN ILQ = .TRUE. ICOMPQ = 2 NQ = N ELSE IF( LSAME( COMPQ, 'I' ) ) THEN ILQ = .TRUE. ICOMPQ = 3 NQ = N ELSE ICOMPQ = 0 END IF* IF( LSAME( COMPZ, 'N' ) ) THEN ILZ = .FALSE. ICOMPZ = 1 NZ = 0 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN ILZ = .TRUE. ICOMPZ = 2 NZ = N ELSE IF( LSAME( COMPZ, 'I' ) ) THEN ILZ = .TRUE. ICOMPZ = 3 NZ = N ELSE ICOMPZ = 0 END IF** Check Argument Values* INFO = 0 WORK( 1 ) = MAX( 1, N ) LQUERY = ( LWORK.EQ.-1 ) IF( ISCHUR.EQ.0 ) THEN INFO = -1 ELSE IF( ICOMPQ.EQ.0 ) THEN INFO = -2 ELSE IF( ICOMPZ.EQ.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( ILO.LT.1 ) THEN INFO = -5 ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN INFO = -6 ELSE IF( LDA.LT.N ) THEN INFO = -8 ELSE IF( LDB.LT.N ) THEN INFO = -10 ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN INFO = -15 ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN INFO = -17 ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN INFO = -19 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SHGEQZ', -INFO )
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -