⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlasd6.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,     $                   IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,     $                   LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,     $                   IWORK, INFO )**  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,     $                   NR, SQRE      DOUBLE PRECISION   ALPHA, BETA, C, S*     ..*     .. Array Arguments ..      INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),     $                   PERM( * )      DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( * ),     $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),     $                   VF( * ), VL( * ), WORK( * ), Z( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLASD6 computes the SVD of an updated upper bidiagonal matrix B*  obtained by merging two smaller ones by appending a row. This*  routine is used only for the problem which requires all singular*  values and optionally singular vector matrices in factored form.*  B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.*  A related subroutine, DLASD1, handles the case in which all singular*  values and singular vectors of the bidiagonal matrix are desired.**  DLASD6 computes the SVD as follows:**                ( D1(in)  0    0     0 )*    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in)*                (   0     0   D2(in) 0 )**      = U(out) * ( D(out) 0) * VT(out)**  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M*  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros*  elsewhere; and the entry b is empty if SQRE = 0.**  The singular values of B can be computed using D1, D2, the first*  components of all the right singular vectors of the lower block, and*  the last components of all the right singular vectors of the upper*  block. These components are stored and updated in VF and VL,*  respectively, in DLASD6. Hence U and VT are not explicitly*  referenced.**  The singular values are stored in D. The algorithm consists of two*  stages:**        The first stage consists of deflating the size of the problem*        when there are multiple singular values or if there is a zero*        in the Z vector. For each such occurence the dimension of the*        secular equation problem is reduced by one. This stage is*        performed by the routine DLASD7.**        The second stage consists of calculating the updated*        singular values. This is done by finding the roots of the*        secular equation via the routine DLASD4 (as called by DLASD8).*        This routine also updates VF and VL and computes the distances*        between the updated singular values and the old singular*        values.**  DLASD6 is called from DLASDA.**  Arguments*  =========**  ICOMPQ (input) INTEGER*         Specifies whether singular vectors are to be computed in*         factored form:*         = 0: Compute singular values only.*         = 1: Compute singular vectors in factored form as well.**  NL     (input) INTEGER*         The row dimension of the upper block.  NL >= 1.**  NR     (input) INTEGER*         The row dimension of the lower block.  NR >= 1.**  SQRE   (input) INTEGER*         = 0: the lower block is an NR-by-NR square matrix.*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.**         The bidiagonal matrix has row dimension N = NL + NR + 1,*         and column dimension M = N + SQRE.**  D      (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).*         On entry D(1:NL,1:NL) contains the singular values of the*         upper block, and D(NL+2:N) contains the singular values*         of the lower block. On exit D(1:N) contains the singular*         values of the modified matrix.**  VF     (input/output) DOUBLE PRECISION array, dimension ( M )*         On entry, VF(1:NL+1) contains the first components of all*         right singular vectors of the upper block; and VF(NL+2:M)*         contains the first components of all right singular vectors*         of the lower block. On exit, VF contains the first components*         of all right singular vectors of the bidiagonal matrix.**  VL     (input/output) DOUBLE PRECISION array, dimension ( M )*         On entry, VL(1:NL+1) contains the  last components of all*         right singular vectors of the upper block; and VL(NL+2:M)*         contains the last components of all right singular vectors of*         the lower block. On exit, VL contains the last components of*         all right singular vectors of the bidiagonal matrix.**  ALPHA  (input) DOUBLE PRECISION*         Contains the diagonal element associated with the added row.**  BETA   (input) DOUBLE PRECISION*         Contains the off-diagonal element associated with the added*         row.**  IDXQ   (output) INTEGER array, dimension ( N )*         This contains the permutation which will reintegrate the*         subproblem just solved back into sorted order, i.e.*         D( IDXQ( I = 1, N ) ) will be in ascending order.**  PERM   (output) INTEGER array, dimension ( N )*         The permutations (from deflation and sorting) to be applied*         to each block. Not referenced if ICOMPQ = 0.**  GIVPTR (output) INTEGER*         The number of Givens rotations which took place in this*         subproblem. Not referenced if ICOMPQ = 0.**  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )*         Each pair of numbers indicates a pair of columns to take place*         in a Givens rotation. Not referenced if ICOMPQ = 0.**  LDGCOL (input) INTEGER*         leading dimension of GIVCOL, must be at least N.**  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )*         Each number indicates the C or S value to be used in the*         corresponding Givens rotation. Not referenced if ICOMPQ = 0.**  LDGNUM (input) INTEGER*         The leading dimension of GIVNUM and POLES, must be at least N.**  POLES  (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )*         On exit, POLES(1,*) is an array containing the new singular*         values obtained from solving the secular equation, and*         POLES(2,*) is an array containing the poles in the secular*         equation. Not referenced if ICOMPQ = 0.**  DIFL   (output) DOUBLE PRECISION array, dimension ( N )*         On exit, DIFL(I) is the distance between I-th updated*         (undeflated) singular value and the I-th (undeflated) old*         singular value.**  DIFR   (output) DOUBLE PRECISION array,*                  dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and*                  dimension ( N ) if ICOMPQ = 0.*         On exit, DIFR(I, 1) is the distance between I-th updated*         (undeflated) singular value and the I+1-th (undeflated) old*         singular value.**         If ICOMPQ = 1, DIFR(1:K,2) is an array containing the*         normalizing factors for the right singular vector matrix.**         See DLASD8 for details on DIFL and DIFR.**  Z      (output) DOUBLE PRECISION array, dimension ( M )*         The first elements of this array contain the components*         of the deflation-adjusted updating row vector.**  K      (output) INTEGER*         Contains the dimension of the non-deflated matrix,*         This is the order of the related secular equation. 1 <= K <=N.**  C      (output) DOUBLE PRECISION*         C contains garbage if SQRE =0 and the C-value of a Givens*         rotation related to the right null space if SQRE = 1.**  S      (output) DOUBLE PRECISION*         S contains garbage if SQRE =0 and the S-value of a Givens*         rotation related to the right null space if SQRE = 1.**  WORK   (workspace) DOUBLE PRECISION array, dimension ( 4 * M )**  IWORK  (workspace) INTEGER array, dimension ( 3 * N )**  INFO   (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = 1, an singular value did not converge**  Further Details*  ===============**  Based on contributions by*     Ming Gu and Huan Ren, Computer Science Division, University of*     California at Berkeley, USA**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE, ZERO      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )*     ..*     .. Local Scalars ..      INTEGER            I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M,     $                   N, N1, N2      DOUBLE PRECISION   ORGNRM*     ..*     .. External Subroutines ..      EXTERNAL           DCOPY, DLAMRG, DLASCL, DLASD7, DLASD8, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          DBLE, ABS, MAX*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0      N = NL + NR + 1      M = N + SQRE*      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN         INFO = -1      ELSE IF( NL.LT.1 ) THEN         INFO = -2      ELSE IF( NR.LT.1 ) THEN         INFO = -3      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN         INFO = -4      ELSE IF( LDGCOL.LT.N ) THEN         INFO = -14      ELSE IF( LDGNUM.LT.N ) THEN         INFO = -16      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLASD6', -INFO )         RETURN      END IF**     The following values are for bookkeeping purposes only.  They are*     integer pointers which indicate the portion of the workspace*     used by a particular array in DLASD7 and DLASD8.*      ISIGMA = 1      IW = ISIGMA + N      IVFW = IW + M      IVLW = IVFW + M*      IDX = 1      IDXC = IDX + N      IDXP = IDXC + N**     Scale.*      ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )      D( NL+1 ) = ZERO      DO 10 I = 1, N         IF( ABS( D( I ) ).GT.ORGNRM ) THEN            ORGNRM = ABS( D( I ) )         END IF   10 CONTINUE      OPS = OPS + DBLE( N + 2 )      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )      ALPHA = ALPHA / ORGNRM      BETA = BETA / ORGNRM**     Sort and Deflate singular values.*      CALL DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF,     $             WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA,     $             WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ,     $             PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S,     $             INFO )**     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.*      CALL DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM,     $             WORK( ISIGMA ), WORK( IW ), INFO )**     Save the poles if ICOMPQ = 1.*      IF( ICOMPQ.EQ.1 ) THEN         CALL DCOPY( K, D, 1, POLES( 1, 1 ), 1 )         CALL DCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 )      END IF**     Unscale.*      OPS = OPS + DBLE( N )      CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )**     Prepare the IDXQ sorting permutation.*      N1 = K      N2 = N - K      CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )*      RETURN**     End of DLASD6*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -