📄 dlasd6.f
字号:
SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA, $ IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, $ LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK, $ IWORK, INFO )** -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* June 30, 1999** .. Scalar Arguments .. INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, $ NR, SQRE DOUBLE PRECISION ALPHA, BETA, C, S* ..* .. Array Arguments .. INTEGER GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ), $ PERM( * ) DOUBLE PRECISION D( * ), DIFL( * ), DIFR( * ), $ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), $ VF( * ), VL( * ), WORK( * ), Z( * )* ..* .. Common block to return operation count .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. DOUBLE PRECISION ITCNT, OPS* ..** Purpose* =======** DLASD6 computes the SVD of an updated upper bidiagonal matrix B* obtained by merging two smaller ones by appending a row. This* routine is used only for the problem which requires all singular* values and optionally singular vector matrices in factored form.* B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.* A related subroutine, DLASD1, handles the case in which all singular* values and singular vectors of the bidiagonal matrix are desired.** DLASD6 computes the SVD as follows:** ( D1(in) 0 0 0 )* B = U(in) * ( Z1' a Z2' b ) * VT(in)* ( 0 0 D2(in) 0 )** = U(out) * ( D(out) 0) * VT(out)** where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M* with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros* elsewhere; and the entry b is empty if SQRE = 0.** The singular values of B can be computed using D1, D2, the first* components of all the right singular vectors of the lower block, and* the last components of all the right singular vectors of the upper* block. These components are stored and updated in VF and VL,* respectively, in DLASD6. Hence U and VT are not explicitly* referenced.** The singular values are stored in D. The algorithm consists of two* stages:** The first stage consists of deflating the size of the problem* when there are multiple singular values or if there is a zero* in the Z vector. For each such occurence the dimension of the* secular equation problem is reduced by one. This stage is* performed by the routine DLASD7.** The second stage consists of calculating the updated* singular values. This is done by finding the roots of the* secular equation via the routine DLASD4 (as called by DLASD8).* This routine also updates VF and VL and computes the distances* between the updated singular values and the old singular* values.** DLASD6 is called from DLASDA.** Arguments* =========** ICOMPQ (input) INTEGER* Specifies whether singular vectors are to be computed in* factored form:* = 0: Compute singular values only.* = 1: Compute singular vectors in factored form as well.** NL (input) INTEGER* The row dimension of the upper block. NL >= 1.** NR (input) INTEGER* The row dimension of the lower block. NR >= 1.** SQRE (input) INTEGER* = 0: the lower block is an NR-by-NR square matrix.* = 1: the lower block is an NR-by-(NR+1) rectangular matrix.** The bidiagonal matrix has row dimension N = NL + NR + 1,* and column dimension M = N + SQRE.** D (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).* On entry D(1:NL,1:NL) contains the singular values of the* upper block, and D(NL+2:N) contains the singular values* of the lower block. On exit D(1:N) contains the singular* values of the modified matrix.** VF (input/output) DOUBLE PRECISION array, dimension ( M )* On entry, VF(1:NL+1) contains the first components of all* right singular vectors of the upper block; and VF(NL+2:M)* contains the first components of all right singular vectors* of the lower block. On exit, VF contains the first components* of all right singular vectors of the bidiagonal matrix.** VL (input/output) DOUBLE PRECISION array, dimension ( M )* On entry, VL(1:NL+1) contains the last components of all* right singular vectors of the upper block; and VL(NL+2:M)* contains the last components of all right singular vectors of* the lower block. On exit, VL contains the last components of* all right singular vectors of the bidiagonal matrix.** ALPHA (input) DOUBLE PRECISION* Contains the diagonal element associated with the added row.** BETA (input) DOUBLE PRECISION* Contains the off-diagonal element associated with the added* row.** IDXQ (output) INTEGER array, dimension ( N )* This contains the permutation which will reintegrate the* subproblem just solved back into sorted order, i.e.* D( IDXQ( I = 1, N ) ) will be in ascending order.** PERM (output) INTEGER array, dimension ( N )* The permutations (from deflation and sorting) to be applied* to each block. Not referenced if ICOMPQ = 0.** GIVPTR (output) INTEGER* The number of Givens rotations which took place in this* subproblem. Not referenced if ICOMPQ = 0.** GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )* Each pair of numbers indicates a pair of columns to take place* in a Givens rotation. Not referenced if ICOMPQ = 0.** LDGCOL (input) INTEGER* leading dimension of GIVCOL, must be at least N.** GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )* Each number indicates the C or S value to be used in the* corresponding Givens rotation. Not referenced if ICOMPQ = 0.** LDGNUM (input) INTEGER* The leading dimension of GIVNUM and POLES, must be at least N.** POLES (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )* On exit, POLES(1,*) is an array containing the new singular* values obtained from solving the secular equation, and* POLES(2,*) is an array containing the poles in the secular* equation. Not referenced if ICOMPQ = 0.** DIFL (output) DOUBLE PRECISION array, dimension ( N )* On exit, DIFL(I) is the distance between I-th updated* (undeflated) singular value and the I-th (undeflated) old* singular value.** DIFR (output) DOUBLE PRECISION array,* dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and* dimension ( N ) if ICOMPQ = 0.* On exit, DIFR(I, 1) is the distance between I-th updated* (undeflated) singular value and the I+1-th (undeflated) old* singular value.** If ICOMPQ = 1, DIFR(1:K,2) is an array containing the* normalizing factors for the right singular vector matrix.** See DLASD8 for details on DIFL and DIFR.** Z (output) DOUBLE PRECISION array, dimension ( M )* The first elements of this array contain the components* of the deflation-adjusted updating row vector.** K (output) INTEGER* Contains the dimension of the non-deflated matrix,* This is the order of the related secular equation. 1 <= K <=N.** C (output) DOUBLE PRECISION* C contains garbage if SQRE =0 and the C-value of a Givens* rotation related to the right null space if SQRE = 1.** S (output) DOUBLE PRECISION* S contains garbage if SQRE =0 and the S-value of a Givens* rotation related to the right null space if SQRE = 1.** WORK (workspace) DOUBLE PRECISION array, dimension ( 4 * M )** IWORK (workspace) INTEGER array, dimension ( 3 * N )** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: if INFO = 1, an singular value did not converge** Further Details* ===============** Based on contributions by* Ming Gu and Huan Ren, Computer Science Division, University of* California at Berkeley, USA** =====================================================================** .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )* ..* .. Local Scalars .. INTEGER I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M, $ N, N1, N2 DOUBLE PRECISION ORGNRM* ..* .. External Subroutines .. EXTERNAL DCOPY, DLAMRG, DLASCL, DLASD7, DLASD8, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC DBLE, ABS, MAX* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0 N = NL + NR + 1 M = N + SQRE* IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN INFO = -1 ELSE IF( NL.LT.1 ) THEN INFO = -2 ELSE IF( NR.LT.1 ) THEN INFO = -3 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN INFO = -4 ELSE IF( LDGCOL.LT.N ) THEN INFO = -14 ELSE IF( LDGNUM.LT.N ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLASD6', -INFO ) RETURN END IF** The following values are for bookkeeping purposes only. They are* integer pointers which indicate the portion of the workspace* used by a particular array in DLASD7 and DLASD8.* ISIGMA = 1 IW = ISIGMA + N IVFW = IW + M IVLW = IVFW + M* IDX = 1 IDXC = IDX + N IDXP = IDXC + N** Scale.* ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) ) D( NL+1 ) = ZERO DO 10 I = 1, N IF( ABS( D( I ) ).GT.ORGNRM ) THEN ORGNRM = ABS( D( I ) ) END IF 10 CONTINUE OPS = OPS + DBLE( N + 2 ) CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO ) ALPHA = ALPHA / ORGNRM BETA = BETA / ORGNRM** Sort and Deflate singular values.* CALL DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF, $ WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA, $ WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ, $ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S, $ INFO )** Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.* CALL DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM, $ WORK( ISIGMA ), WORK( IW ), INFO )** Save the poles if ICOMPQ = 1.* IF( ICOMPQ.EQ.1 ) THEN CALL DCOPY( K, D, 1, POLES( 1, 1 ), 1 ) CALL DCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 ) END IF** Unscale.* OPS = OPS + DBLE( N ) CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )** Prepare the IDXQ sorting permutation.* N1 = K N2 = N - K CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )* RETURN** End of DLASD6* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -