⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgesdd.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 5 页
字号:
      SUBROUTINE ZGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,     $                   LWORK, RWORK, IWORK, INFO )**  -- LAPACK driver routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999**     .. Scalar Arguments ..      CHARACTER          JOBZ      INTEGER            INFO, LDA, LDU, LDVT, LWORK, M, N*     ..*     .. Array Arguments ..      INTEGER            IWORK( * )      DOUBLE PRECISION   RWORK( * ), S( * )      COMPLEX*16         A( LDA, * ), U( LDU, * ), VT( LDVT, * ),     $                   WORK( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  ZGESDD computes the singular value decomposition (SVD) of a complex*  M-by-N matrix A, optionally computing the left and/or right singular*  vectors, by using divide-and-conquer method. The SVD is written**       A = U * SIGMA * conjugate-transpose(V)**  where SIGMA is an M-by-N matrix which is zero except for its*  min(m,n) diagonal elements, U is an M-by-M unitary matrix, and*  V is an N-by-N unitary matrix.  The diagonal elements of SIGMA*  are the singular values of A; they are real and non-negative, and*  are returned in descending order.  The first min(m,n) columns of*  U and V are the left and right singular vectors of A.**  Note that the routine returns VT = V**H, not V.**  The divide and conquer algorithm makes very mild assumptions about*  floating point arithmetic. It will work on machines with a guard*  digit in add/subtract, or on those binary machines without guard*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or*  Cray-2. It could conceivably fail on hexadecimal or decimal machines*  without guard digits, but we know of none.**  Arguments*  =========**  JOBZ    (input) CHARACTER*1*          Specifies options for computing all or part of the matrix U:*          = 'A':  all M columns of U and all N rows of V**H are*                  returned in the arrays U and VT;*          = 'S':  the first min(M,N) columns of U and the first*                  min(M,N) rows of V**H are returned in the arrays U*                  and VT;*          = 'O':  If M >= N, the first N columns of U are overwritten*                  on the array A and all rows of V**H are returned in*                  the array VT;*                  otherwise, all columns of U are returned in the*                  array U and the first M rows of V**H are overwritten*                  in the array VT;*          = 'N':  no columns of U or rows of V**H are computed.**  M       (input) INTEGER*          The number of rows of the input matrix A.  M >= 0.**  N       (input) INTEGER*          The number of columns of the input matrix A.  N >= 0.**  A       (input/output) COMPLEX*16 array, dimension (LDA,N)*          On entry, the M-by-N matrix A.*          On exit,*          if JOBZ = 'O',  A is overwritten with the first N columns*                          of U (the left singular vectors, stored*                          columnwise) if M >= N;*                          A is overwritten with the first M rows*                          of V**H (the right singular vectors, stored*                          rowwise) otherwise.*          if JOBZ .ne. 'O', the contents of A are destroyed.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,M).**  S       (output) DOUBLE PRECISION array, dimension (min(M,N))*          The singular values of A, sorted so that S(i) >= S(i+1).**  U       (output) COMPLEX*16 array, dimension (LDU,UCOL)*          UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;*          UCOL = min(M,N) if JOBZ = 'S'.*          If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M*          unitary matrix U;*          if JOBZ = 'S', U contains the first min(M,N) columns of U*          (the left singular vectors, stored columnwise);*          if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.**  LDU     (input) INTEGER*          The leading dimension of the array U.  LDU >= 1; if*          JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.**  VT      (output) COMPLEX*16 array, dimension (LDVT,N)*          If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the*          N-by-N unitary matrix V**H;*          if JOBZ = 'S', VT contains the first min(M,N) rows of*          V**H (the right singular vectors, stored rowwise);*          if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.**  LDVT    (input) INTEGER*          The leading dimension of the array VT.  LDVT >= 1; if*          JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;*          if JOBZ = 'S', LDVT >= min(M,N).**  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.**  LWORK   (input) INTEGER*          The dimension of the array WORK. LWORK >= 1.*          if JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N).*          if JOBZ = 'O',*                LWORK >= 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).*          if JOBZ = 'S' or 'A',*                LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N).*          For good performance, LWORK should generally be larger.*          If LWORK < 0 but other input arguments are legal, WORK(1)*          returns the optimal LWORK.**  RWORK   (workspace) DOUBLE PRECISION array, dimension (LRWORK)*          If JOBZ = 'N', LRWORK >= 7*min(M,N).*          Otherwise, LRWORK >= 5*min(M,N)*min(M,N) + 5*min(M,N)**  IWORK   (workspace) INTEGER array, dimension (8*min(M,N))**  INFO    (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  The updating process of DBDSDC did not converge.**  Further Details*  ===============**  Based on contributions by*     Ming Gu and Huan Ren, Computer Science Division, University of*     California at Berkeley, USA**  =====================================================================**     .. Parameters ..      COMPLEX*16         CZERO, CONE      PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),     $                   CONE = ( 1.0D0, 0.0D0 ) )      DOUBLE PRECISION   ZERO, ONE      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )*     ..*     .. Local Scalars ..      LOGICAL            LQUERY, WNTQA, WNTQAS, WNTQN, WNTQO, WNTQS      INTEGER            BLK, CHUNK, I, IE, IERR, IL, IR, IRU, IRVT,     $                   ISCL, ITAU, ITAUP, ITAUQ, IU, IVT, LDWKVT,     $                   LDWRKL, LDWRKR, LDWRKU, MAXWRK, MINMN, MINWRK,     $                   MNTHR1, MNTHR2, NB, NRWORK, NWORK, WRKBL      DOUBLE PRECISION   ANRM, BIGNUM, EPS, SMLNUM*     ..*     .. Local Arrays ..      INTEGER            IDUM( 1 )      DOUBLE PRECISION   DUM( 1 )*     ..*     .. External Subroutines ..      EXTERNAL           DBDSDC, DLASCL, XERBLA, ZGEBRD, ZGELQF, ZGEMM,      $                   ZGEQRF, ZLACP2, ZLACPY, ZLACRM, ZLARCM, ZLASCL,      $                   ZLASET, ZUNGBR, ZUNGLQ, ZUNGQR, ZUNMBR*     ..*     .. External Functions ..      LOGICAL            LSAME      INTEGER            ILAENV      DOUBLE PRECISION   DLAMCH, DOPBL3, DOPLA, DOPLA2, ZLANGE      EXTERNAL           DLAMCH, DOPBL3, DOPLA, DOPLA2, ILAENV, LSAME,      $                   ZLANGE*     ..*     .. Intrinsic Functions ..      INTRINSIC          INT, MAX, MIN, SQRT*     ..*     .. Executable Statements ..**     Test the input arguments*      INFO = 0      MINMN = MIN( M, N )      MNTHR1 = INT( MINMN*17.0D0 / 9.0D0 )      MNTHR2 = INT( MINMN*5.0D0 / 3.0D0 )      WNTQA = LSAME( JOBZ, 'A' )      WNTQS = LSAME( JOBZ, 'S' )      WNTQAS = WNTQA .OR. WNTQS      WNTQO = LSAME( JOBZ, 'O' )      WNTQN = LSAME( JOBZ, 'N' )      MINWRK = 1      MAXWRK = 1      LQUERY = ( LWORK.EQ.-1 )*      IF( .NOT.( WNTQA .OR. WNTQS .OR. WNTQO .OR. WNTQN ) ) THEN         INFO = -1      ELSE IF( M.LT.0 ) THEN         INFO = -2      ELSE IF( N.LT.0 ) THEN         INFO = -3      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -5      ELSE IF( LDU.LT.1 .OR. ( WNTQAS .AND. LDU.LT.M ) .OR.     $         ( WNTQO .AND. M.LT.N .AND. LDU.LT.M ) ) THEN         INFO = -8      ELSE IF( LDVT.LT.1 .OR. ( WNTQA .AND. LDVT.LT.N ) .OR.     $         ( WNTQS .AND. LDVT.LT.MINMN ) .OR.     $         ( WNTQO .AND. M.GE.N .AND. LDVT.LT.N ) ) THEN         INFO = -10      END IF**     Compute workspace*      (Note: Comments in the code beginning "Workspace:" describe the*       minimal amount of workspace needed at that point in the code,*       as well as the preferred amount for good performance.*       CWorkspace refers to complex workspace, and RWorkspace to*       real workspace. NB refers to the optimal block size for the*       immediately following subroutine, as returned by ILAENV.)*      IF( INFO.EQ.0 .AND. M.GT.0 .AND. N.GT.0 ) THEN         IF( M.GE.N ) THEN**           There is no complex work space needed for bidiagonal SVD*           The real work space needed for bidiagonal SVD is BDSPAC,*           BDSPAC = 3*N*N + 4*N*            IF( M.GE.MNTHR1 ) THEN               IF( WNTQN ) THEN**                 Path 1 (M much larger than N, JOBZ='N')*                  WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1,     $                    -1 )                  WRKBL = MAX( WRKBL, 2*N+2*N*     $                    ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )                  MAXWRK = WRKBL                  MINWRK = 3*N               ELSE IF( WNTQO ) THEN**                 Path 2 (M much larger than N, JOBZ='O')*                  WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )                  WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,     $                    N, N, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+2*N*     $                    ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+N*     $                    ILAENV( 1, 'ZUNMBR', 'QLN', N, N, N, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+N*     $                    ILAENV( 1, 'ZUNMBR', 'PRC', N, N, N, -1 ) )                  MAXWRK = M*N + N*N + WRKBL                  MINWRK = 2*N*N + 3*N               ELSE IF( WNTQS ) THEN**                 Path 3 (M much larger than N, JOBZ='S')*                  WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )                  WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,     $                    N, N, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+2*N*     $                    ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+N*     $                    ILAENV( 1, 'ZUNMBR', 'QLN', N, N, N, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+N*     $                    ILAENV( 1, 'ZUNMBR', 'PRC', N, N, N, -1 ) )                  MAXWRK = N*N + WRKBL                  MINWRK = N*N + 3*N               ELSE IF( WNTQA ) THEN**                 Path 4 (M much larger than N, JOBZ='A')*                  WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )                  WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'ZUNGQR', ' ', M,     $                    M, N, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+2*N*     $                    ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+N*     $                    ILAENV( 1, 'ZUNMBR', 'QLN', N, N, N, -1 ) )                  WRKBL = MAX( WRKBL, 2*N+N*     $                    ILAENV( 1, 'ZUNMBR', 'PRC', N, N, N, -1 ) )                  MAXWRK = N*N + WRKBL                  MINWRK = N*N + 2*N + M               END IF            ELSE IF( M.GE.MNTHR2 ) THEN**              Path 5 (M much larger than N, but not as much as MNTHR1)*               MAXWRK = 2*N + ( M+N )*ILAENV( 1, 'ZGEBRD', ' ', M, N,     $                  -1, -1 )               MINWRK = 2*N + M               IF( WNTQO ) THEN                  MAXWRK = MAX( MAXWRK, 2*N+N*     $                     ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )                  MAXWRK = MAX( MAXWRK, 2*N+N*     $                     ILAENV( 1, 'ZUNGBR', 'Q', M, N, N, -1 ) )                  MAXWRK = MAXWRK + M*N                  MINWRK = MINWRK + N*N               ELSE IF( WNTQS ) THEN                  MAXWRK = MAX( MAXWRK, 2*N+N*     $                     ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )                  MAXWRK = MAX( MAXWRK, 2*N+N*     $                     ILAENV( 1, 'ZUNGBR', 'Q', M, N, N, -1 ) )               ELSE IF( WNTQA ) THEN                  MAXWRK = MAX( MAXWRK, 2*N+N*     $                     ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )                  MAXWRK = MAX( MAXWRK, 2*N+M*     $                     ILAENV( 1, 'ZUNGBR', 'Q', M, M, N, -1 ) )               END IF            ELSE**              Path 6 (M at least N, but not much larger)*               MAXWRK = 2*N + ( M+N )*ILAENV( 1, 'ZGEBRD', ' ', M, N,     $                  -1, -1 )               MINWRK = 2*N + M               IF( WNTQO ) THEN                  MAXWRK = MAX( MAXWRK, 2*N+N*

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -