⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slasd7.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,     $                   VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,     $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,     $                   C, S, INFO )**  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,*     Courant Institute, NAG Ltd., and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,     $                   NR, SQRE      REAL               ALPHA, BETA, C, S*     ..*     .. Array Arguments ..      INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),     $                   IDXQ( * ), PERM( * )      REAL               D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),     $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),     $                   ZW( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..**  Purpose*  =======**  SLASD7 merges the two sets of singular values together into a single*  sorted set. Then it tries to deflate the size of the problem. There*  are two ways in which deflation can occur:  when two or more singular*  values are close together or if there is a tiny entry in the Z*  vector. For each such occurrence the order of the related*  secular equation problem is reduced by one.**  SLASD7 is called from SLASD6.**  Arguments*  =========**  ICOMPQ  (input) INTEGER*          Specifies whether singular vectors are to be computed*          in compact form, as follows:*          = 0: Compute singular values only.*          = 1: Compute singular vectors of upper*               bidiagonal matrix in compact form.**  NL     (input) INTEGER*         The row dimension of the upper block. NL >= 1.**  NR     (input) INTEGER*         The row dimension of the lower block. NR >= 1.**  SQRE   (input) INTEGER*         = 0: the lower block is an NR-by-NR square matrix.*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.**         The bidiagonal matrix has*         N = NL + NR + 1 rows and*         M = N + SQRE >= N columns.**  K      (output) INTEGER*         Contains the dimension of the non-deflated matrix, this is*         the order of the related secular equation. 1 <= K <=N.**  D      (input/output) REAL array, dimension ( N )*         On entry D contains the singular values of the two submatrices*         to be combined. On exit D contains the trailing (N-K) updated*         singular values (those which were deflated) sorted into*         increasing order.**  Z      (output) REAL array, dimension ( M )*         On exit Z contains the updating row vector in the secular*         equation.**  ZW     (workspace) REAL array, dimension ( M )*         Workspace for Z.**  VF     (input/output) REAL array, dimension ( M )*         On entry, VF(1:NL+1) contains the first components of all*         right singular vectors of the upper block; and VF(NL+2:M)*         contains the first components of all right singular vectors*         of the lower block. On exit, VF contains the first components*         of all right singular vectors of the bidiagonal matrix.**  VFW    (workspace) REAL array, dimension ( M )*         Workspace for VF.**  VL     (input/output) REAL array, dimension ( M )*         On entry, VL(1:NL+1) contains the  last components of all*         right singular vectors of the upper block; and VL(NL+2:M)*         contains the last components of all right singular vectors*         of the lower block. On exit, VL contains the last components*         of all right singular vectors of the bidiagonal matrix.**  VLW    (workspace) REAL array, dimension ( M )*         Workspace for VL.**  ALPHA  (input) REAL*         Contains the diagonal element associated with the added row.**  BETA   (input) REAL*         Contains the off-diagonal element associated with the added*         row.**  DSIGMA (output) REAL array, dimension ( N )*         Contains a copy of the diagonal elements (K-1 singular values*         and one zero) in the secular equation.**  IDX    (workspace) INTEGER array, dimension ( N )*         This will contain the permutation used to sort the contents of*         D into ascending order.**  IDXP   (workspace) INTEGER array, dimension ( N )*         This will contain the permutation used to place deflated*         values of D at the end of the array. On output IDXP(2:K)*         points to the nondeflated D-values and IDXP(K+1:N)*         points to the deflated singular values.**  IDXQ   (input) INTEGER array, dimension ( N )*         This contains the permutation which separately sorts the two*         sub-problems in D into ascending order.  Note that entries in*         the first half of this permutation must first be moved one*         position backward; and entries in the second half*         must first have NL+1 added to their values.**  PERM   (output) INTEGER array, dimension ( N )*         The permutations (from deflation and sorting) to be applied*         to each singular block. Not referenced if ICOMPQ = 0.**  GIVPTR (output) INTEGER*         The number of Givens rotations which took place in this*         subproblem. Not referenced if ICOMPQ = 0.**  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )*         Each pair of numbers indicates a pair of columns to take place*         in a Givens rotation. Not referenced if ICOMPQ = 0.**  LDGCOL (input) INTEGER*         The leading dimension of GIVCOL, must be at least N.**  GIVNUM (output) REAL array, dimension ( LDGNUM, 2 )*         Each number indicates the C or S value to be used in the*         corresponding Givens rotation. Not referenced if ICOMPQ = 0.**  LDGNUM (input) INTEGER*         The leading dimension of GIVNUM, must be at least N.**  C      (output) REAL*         C contains garbage if SQRE =0 and the C-value of a Givens*         rotation related to the right null space if SQRE = 1.**  S      (output) REAL*         S contains garbage if SQRE =0 and the S-value of a Givens*         rotation related to the right null space if SQRE = 1.**  INFO   (output) INTEGER*         = 0:  successful exit.*         < 0:  if INFO = -i, the i-th argument had an illegal value.**  Further Details*  ===============**  Based on contributions by*     Ming Gu and Huan Ren, Computer Science Division, University of*     California at Berkeley, USA**  =====================================================================**     .. Parameters ..      REAL               ZERO, ONE, TWO, EIGHT      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,     $                   EIGHT = 8.0E0 )*     ..*     .. Local Scalars ..*      INTEGER            I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,     $                   NLP1, NLP2      REAL               EPS, HLFTOL, TAU, TOL, Z1*     ..*     .. External Subroutines ..      EXTERNAL           SCOPY, SLAMRG, SROT, XERBLA*     ..*     .. External Functions ..      REAL               SLAMCH, SLAPY2      EXTERNAL           SLAMCH, SLAPY2*     ..*     .. Intrinsic Functions ..      INTRINSIC          REAL, ABS, MAX*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0      N = NL + NR + 1      M = N + SQRE*      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN         INFO = -1      ELSE IF( NL.LT.1 ) THEN         INFO = -2      ELSE IF( NR.LT.1 ) THEN         INFO = -3      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN         INFO = -4      ELSE IF( LDGCOL.LT.N ) THEN         INFO = -22      ELSE IF( LDGNUM.LT.N ) THEN         INFO = -24      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'SLASD7', -INFO )         RETURN      END IF*      NLP1 = NL + 1      NLP2 = NL + 2      IF( ICOMPQ.EQ.1 ) THEN         GIVPTR = 0      END IF**     Generate the first part of the vector Z and move the singular*     values in the first part of D one position backward.*      OPS = OPS + REAL( 1 + NL )      Z1 = ALPHA*VL( NLP1 )      VL( NLP1 ) = ZERO      TAU = VF( NLP1 )      DO 10 I = NL, 1, -1         Z( I+1 ) = ALPHA*VL( I )         VL( I ) = ZERO         VF( I+1 ) = VF( I )         D( I+1 ) = D( I )         IDXQ( I+1 ) = IDXQ( I ) + 1   10 CONTINUE      VF( 1 ) = TAU**     Generate the second part of the vector Z.*      OPS = OPS + REAL( ( M-NLP2+1 ) )      DO 20 I = NLP2, M         Z( I ) = BETA*VF( I )         VF( I ) = ZERO   20 CONTINUE**     Sort the singular values into increasing order*      DO 30 I = NLP2, N         IDXQ( I ) = IDXQ( I ) + NLP1   30 CONTINUE**     DSIGMA, IDXC, IDXC, and ZW are used as storage space.*      DO 40 I = 2, N         DSIGMA( I ) = D( IDXQ( I ) )         ZW( I ) = Z( IDXQ( I ) )         VFW( I ) = VF( IDXQ( I ) )         VLW( I ) = VL( IDXQ( I ) )   40 CONTINUE*      CALL SLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )*      DO 50 I = 2, N         IDXI = 1 + IDX( I )         D( I ) = DSIGMA( IDXI )         Z( I ) = ZW( IDXI )         VF( I ) = VFW( IDXI )         VL( I ) = VLW( IDXI )   50 CONTINUE**     Calculate the allowable deflation tolerence*      OPS = OPS + REAL( 3 )      EPS = SLAMCH( 'Epsilon' )      TOL = MAX( ABS( ALPHA ), ABS( BETA ) )      TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )**     There are 2 kinds of deflation -- first a value in the z-vector*     is small, second two (or more) singular values are very close*     together (their difference is small).**     If the value in the z-vector is small, we simply permute the*     array so that the corresponding singular value is moved to the*     end.**     If two values in the D-vector are close, we perform a two-sided*     rotation designed to make one of the corresponding z-vector*     entries zero, and then permute the array so that the deflated*     singular value is moved to the end.**     If there are multiple singular values then the problem deflates.*     Here the number of equal singular values are found.  As each equal*     singular value is found, an elementary reflector is computed to*     rotate the corresponding singular subspace so that the*     corresponding components of Z are zero in this new basis.*      K = 1      K2 = N + 1      DO 60 J = 2, N         IF( ABS( Z( J ) ).LE.TOL ) THEN**           Deflate due to small z component.*            K2 = K2 - 1            IDXP( K2 ) = J            IF( J.EQ.N )     $         GO TO 100         ELSE            JPREV = J            GO TO 70         END IF   60 CONTINUE   70 CONTINUE      J = JPREV   80 CONTINUE      J = J + 1      IF( J.GT.N )     $   GO TO 90      IF( ABS( Z( J ) ).LE.TOL ) THEN**        Deflate due to small z component.*         K2 = K2 - 1         IDXP( K2 ) = J      ELSE**        Check if singular values are close enough to allow deflation.*         OPS = OPS + REAL( 1 )         IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN**           Deflation is possible.*            S = Z( JPREV )            C = Z( J )**           Find sqrt(a**2+b**2) without overflow or*           destructive underflow.*            OPS = OPS + REAL( 7 )            TAU = SLAPY2( C, S )            Z( J ) = TAU            Z( JPREV ) = ZERO            C = C / TAU            S = -S / TAU**           Record the appropriate Givens rotation*            IF( ICOMPQ.EQ.1 ) THEN               GIVPTR = GIVPTR + 1               IDXJP = IDXQ( IDX( JPREV )+1 )               IDXJ = IDXQ( IDX( J )+1 )               IF( IDXJP.LE.NLP1 ) THEN                  IDXJP = IDXJP - 1               END IF               IF( IDXJ.LE.NLP1 ) THEN                  IDXJ = IDXJ - 1               END IF               GIVCOL( GIVPTR, 2 ) = IDXJP               GIVCOL( GIVPTR, 1 ) = IDXJ               GIVNUM( GIVPTR, 2 ) = C               GIVNUM( GIVPTR, 1 ) = S            END IF            OPS = OPS + REAL( 12 )            CALL SROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )            CALL SROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )            K2 = K2 - 1            IDXP( K2 ) = JPREV            JPREV = J         ELSE            K = K + 1            ZW( K ) = Z( JPREV )            DSIGMA( K ) = D( JPREV )            IDXP( K ) = JPREV            JPREV = J         END IF      END IF      GO TO 80   90 CONTINUE**     Record the last singular value.*      K = K + 1      ZW( K ) = Z( JPREV )      DSIGMA( K ) = D( JPREV )      IDXP( K ) = JPREV*  100 CONTINUE**     Sort the singular values into DSIGMA. The singular values which*     were not deflated go into the first K slots of DSIGMA, except*     that DSIGMA(1) is treated separately.*      DO 110 J = 2, N         JP = IDXP( J )         DSIGMA( J ) = D( JP )         VFW( J ) = VF( JP )         VLW( J ) = VL( JP )  110 CONTINUE      IF( ICOMPQ.EQ.1 ) THEN         DO 120 J = 2, N            JP = IDXP( J )            PERM( J ) = IDXQ( IDX( JP )+1 )            IF( PERM( J ).LE.NLP1 ) THEN               PERM( J ) = PERM( J ) - 1            END IF  120    CONTINUE      END IF**     The deflated singular values go back into the last N - K slots of*     D.*      CALL SCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )**     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and*     VL(M).*      OPS = OPS + REAL( 1 )      DSIGMA( 1 ) = ZERO      HLFTOL = TOL / TWO      IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )     $   DSIGMA( 2 ) = HLFTOL      IF( M.GT.N ) THEN         OPS = OPS + REAL( 5 )         Z( 1 ) = SLAPY2( Z1, Z( M ) )         IF( Z( 1 ).LE.TOL ) THEN            C = ONE            S = ZERO            Z( 1 ) = TOL         ELSE            OPS = OPS + REAL( 2 )            C = Z1 / Z( 1 )            S = -Z( M ) / Z( 1 )         END IF         OPS = OPS + REAL( 12 )         CALL SROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )         CALL SROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )      ELSE         IF( ABS( Z1 ).LE.TOL ) THEN            Z( 1 ) = TOL         ELSE            Z( 1 ) = Z1         END IF      END IF**     Restore Z, VF, and VL.*      CALL SCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )      CALL SCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )      CALL SCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )*      RETURN**     End of SLASD7*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -