📄 dlasq2.f
字号:
SUBROUTINE DLASQ2( N, Z, INFO )** -- LAPACK routine (instrumented to count ops, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* October 31, 1999 ** .. Scalar Arguments .. INTEGER INFO, N* ..* .. Array Arguments .. DOUBLE PRECISION Z( * )* ..* .. Common block to return operation count .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. DOUBLE PRECISION ITCNT, OPS* ..** Purpose* =======** DLASQ2 computes all the eigenvalues of the symmetric positive * definite tridiagonal matrix associated with the qd array Z to high* relative accuracy are computed to high relative accuracy, in the* absence of denormalization, underflow and overflow.** To see the relation of Z to the tridiagonal matrix, let L be a* unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and* let U be an upper bidiagonal matrix with 1's above and diagonal* Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the* symmetric tridiagonal to which it is similar.** Note : DLASQ2 defines a logical variable, IEEE, which is true* on machines which follow ieee-754 floating-point standard in their* handling of infinities and NaNs, and false otherwise. This variable* is passed to DLASQ3.** Arguments* =========** N (input) INTEGER* The number of rows and columns in the matrix. N >= 0.** Z (workspace) DOUBLE PRECISION array, dimension ( 4*N )* On entry Z holds the qd array. On exit, entries 1 to N hold* the eigenvalues in decreasing order, Z( 2*N+1 ) holds the* trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If* N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )* holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of* shifts that failed.** INFO (output) INTEGER* = 0: successful exit* < 0: if the i-th argument is a scalar and had an illegal* value, then INFO = -i, if the i-th argument is an* array and the j-entry had an illegal value, then* INFO = -(i*100+j)* > 0: the algorithm failed* = 1, a split was marked by a positive value in E* = 2, current block of Z not diagonalized after 30*N* iterations (in inner while loop)* = 3, termination criterion of outer while loop not met * (program created more than N unreduced blocks)** Further Details* ===============* Local Variables: I0:N0 defines a current unreduced segment of Z.* The shifts are accumulated in SIGMA. Iteration count is in ITER.* Ping-pong is controlled by PP (alternates between 0 and 1).** =====================================================================** .. Parameters .. DOUBLE PRECISION CBIAS PARAMETER ( CBIAS = 1.50D0 ) DOUBLE PRECISION ZERO, HALF, ONE, TWO, FOUR, HUNDRD PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0, $ TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 )* ..* .. Local Scalars .. LOGICAL IEEE INTEGER I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K, $ N0, NBIG, NDIV, NFAIL, PP, SPLT DOUBLE PRECISION D, DESIG, DMIN, E, EMAX, EMIN, EPS, OLDEMN, $ QMAX, QMIN, S, SAFMIN, SIGMA, T, TEMP, TOL, $ TOL2, TRACE, ZMAX* ..* .. External Subroutines .. EXTERNAL DLASQ3, DLASRT, XERBLA* ..* .. External Functions .. INTEGER ILAENV DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH, ILAENV* ..* .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN, SQRT* ..* .. Executable Statements ..* * Test the input arguments.* (in case DLASQ2 is not called by DLASQ1)* OPS = OPS + DBLE( 2 ) INFO = 0 EPS = DLAMCH( 'Precision' ) SAFMIN = DLAMCH( 'Safe minimum' ) TOL = EPS*HUNDRD TOL2 = TOL**2* IF( N.LT.0 ) THEN INFO = -1 CALL XERBLA( 'DLASQ2', 1 ) RETURN ELSE IF( N.EQ.0 ) THEN RETURN ELSE IF( N.EQ.1 ) THEN** 1-by-1 case.* IF( Z( 1 ).LT.ZERO ) THEN INFO = -201 CALL XERBLA( 'DLASQ2', 2 ) END IF RETURN ELSE IF( N.EQ.2 ) THEN** 2-by-2 case.* IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN INFO = -2 CALL XERBLA( 'DLASQ2', 2 ) RETURN ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN D = Z( 3 ) Z( 3 ) = Z( 1 ) Z( 1 ) = D END IF OPS = OPS + DBLE( 4 ) Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 ) IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN OPS = OPS + DBLE( 16 ) T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) ) S = Z( 3 )*( Z( 2 ) / T ) IF( S.LE.T ) THEN S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) ) ELSE S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) ) END IF T = Z( 1 ) + ( S+Z( 2 ) ) Z( 3 ) = Z( 3 )*( Z( 1 ) / T ) Z( 1 ) = T END IF Z( 2 ) = Z( 3 ) Z( 6 ) = Z( 2 ) + Z( 1 ) RETURN END IF** Check for negative data and compute sums of q's and e's.* Z( 2*N ) = ZERO EMIN = Z( 2 ) QMAX = ZERO ZMAX = ZERO D = ZERO E = ZERO* OPS = OPS + DBLE( 2*N ) DO 10 K = 1, 2*( N-1 ), 2 IF( Z( K ).LT.ZERO ) THEN INFO = -( 200+K ) CALL XERBLA( 'DLASQ2', 2 ) RETURN ELSE IF( Z( K+1 ).LT.ZERO ) THEN INFO = -( 200+K+1 ) CALL XERBLA( 'DLASQ2', 2 ) RETURN END IF D = D + Z( K ) E = E + Z( K+1 ) QMAX = MAX( QMAX, Z( K ) ) EMIN = MIN( EMIN, Z( K+1 ) ) ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) ) 10 CONTINUE IF( Z( 2*N-1 ).LT.ZERO ) THEN INFO = -( 200+2*N-1 ) CALL XERBLA( 'DLASQ2', 2 ) RETURN END IF D = D + Z( 2*N-1 ) QMAX = MAX( QMAX, Z( 2*N-1 ) ) ZMAX = MAX( QMAX, ZMAX )** Check for diagonality.* IF( E.EQ.ZERO ) THEN DO 20 K = 2, N Z( K ) = Z( 2*K-1 ) 20 CONTINUE CALL DLASRT( 'D', N, Z, IINFO ) Z( 2*N-1 ) = D RETURN END IF* TRACE = D + E** Check for zero data.* IF( TRACE.EQ.ZERO ) THEN Z( 2*N-1 ) = ZERO RETURN END IF* * Check whether the machine is IEEE conformable.* IEEE = ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. $ ILAENV( 11, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 * * Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).* DO 30 K = 2*N, 2, -2 Z( 2*K ) = ZERO Z( 2*K-1 ) = Z( K ) Z( 2*K-2 ) = ZERO Z( 2*K-3 ) = Z( K-1 ) 30 CONTINUE* I0 = 1 N0 = N** Reverse the qd-array, if warranted.* OPS = OPS + DBLE( 1 ) IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN IPN4 = 4*( I0+N0 ) DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4 TEMP = Z( I4-3 ) Z( I4-3 ) = Z( IPN4-I4-3 ) Z( IPN4-I4-3 ) = TEMP TEMP = Z( I4-1 ) Z( I4-1 ) = Z( IPN4-I4-5 ) Z( IPN4-I4-5 ) = TEMP 40 CONTINUE END IF** Initial split checking via dqd and Li's test.* PP = 0* DO 80 K = 1, 2* OPS = OPS + DBLE( N0-I0 ) D = Z( 4*N0+PP-3 ) DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4 IF( Z( I4-1 ).LE.TOL2*D ) THEN Z( I4-1 ) = -ZERO D = Z( I4-3 ) ELSE OPS = OPS + DBLE( 3 ) D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) ) END IF 50 CONTINUE** dqd maps Z to ZZ plus Li's test.* OPS = OPS + DBLE( N0-I0 ) EMIN = Z( 4*I0+PP+1 ) D = Z( 4*I0+PP-3 ) DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4 Z( I4-2*PP-2 ) = D + Z( I4-1 ) IF( Z( I4-1 ).LE.TOL2*D ) THEN Z( I4-1 ) = -ZERO Z( I4-2*PP-2 ) = D Z( I4-2*PP ) = ZERO D = Z( I4+1 ) ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND. $ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN OPS = OPS + DBLE( 5 ) TEMP = Z( I4+1 ) / Z( I4-2*PP-2 ) Z( I4-2*PP ) = Z( I4-1 )*TEMP D = D*TEMP ELSE OPS = OPS + DBLE( 5 ) Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) ) D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) ) END IF EMIN = MIN( EMIN, Z( I4-2*PP ) ) 60 CONTINUE Z( 4*N0-PP-2 ) = D** Now find qmax.* QMAX = Z( 4*I0-PP-2 ) DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4 QMAX = MAX( QMAX, Z( I4 ) ) 70 CONTINUE** Prepare for the next iteration on K.* PP = 1 - PP 80 CONTINUE* ITER = 2 NFAIL = 0 NDIV = 2*( N0-I0 )* DO 140 IWHILA = 1, N + 1 IF( N0.LT.1 ) $ GO TO 150** While array unfinished do ** E(N0) holds the value of SIGMA when submatrix in I0:N0* splits from the rest of the array, but is negated.* DESIG = ZERO IF( N0.EQ.N ) THEN SIGMA = ZERO ELSE SIGMA = -Z( 4*N0-1 ) END IF IF( SIGMA.LT.ZERO ) THEN INFO = 1 RETURN END IF** Find last unreduced submatrix's top index I0, find QMAX and* EMIN. Find Gershgorin-type bound if Q's much greater than E's.* EMAX = ZERO IF( N0.GT.I0 ) THEN EMIN = ABS( Z( 4*N0-5 ) ) ELSE EMIN = ZERO END IF QMIN = Z( 4*N0-3 ) QMAX = QMIN DO 90 I4 = 4*N0, 8, -4 IF( Z( I4-5 ).LE.ZERO ) $ GO TO 100 OPS = OPS + DBLE( 2 ) IF( QMIN.GE.FOUR*EMAX ) THEN QMIN = MIN( QMIN, Z( I4-3 ) ) EMAX = MAX( EMAX, Z( I4-5 ) ) END IF QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) ) EMIN = MIN( EMIN, Z( I4-5 ) ) 90 CONTINUE I4 = 4 * 100 CONTINUE I0 = I4 / 4** Store EMIN for passing to DLASQ3.* Z( 4*N0-1 ) = EMIN** Put -(initial shift) into DMIN.* OPS = OPS + DBLE( 5 ) DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )** Now I0:N0 is unreduced. PP = 0 for ping, PP = 1 for pong.* PP = 0 * NBIG = 30*( N0-I0+1 ) DO 120 IWHILB = 1, NBIG IF( I0.GT.N0 ) $ GO TO 130** While submatrix unfinished take a good dqds step.* CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL, $ ITER, NDIV, IEEE )* PP = 1 - PP** When EMIN is very small check for splits.* IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN OPS = OPS + DBLE( 2 ) IF( Z( 4*N0 ).LE.TOL2*QMAX .OR. $ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN SPLT = I0 - 1 QMAX = Z( 4*I0-3 ) EMIN = Z( 4*I0-1 ) OLDEMN = Z( 4*I0 ) DO 110 I4 = 4*I0, 4*( N0-3 ), 4 OPS = OPS + DBLE( 1 ) IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR. $ Z( I4-1 ).LE.TOL2*SIGMA ) THEN Z( I4-1 ) = -SIGMA SPLT = I4 / 4 QMAX = ZERO EMIN = Z( I4+3 ) OLDEMN = Z( I4+4 ) ELSE QMAX = MAX( QMAX, Z( I4+1 ) ) EMIN = MIN( EMIN, Z( I4-1 ) ) OLDEMN = MIN( OLDEMN, Z( I4 ) ) END IF 110 CONTINUE Z( 4*N0-1 ) = EMIN Z( 4*N0 ) = OLDEMN I0 = SPLT + 1 END IF END IF* 120 CONTINUE* INFO = 2 RETURN** end IWHILB* 130 CONTINUE* 140 CONTINUE* INFO = 3 RETURN** end IWHILA * 150 CONTINUE* * Move q's to the front.* DO 160 K = 2, N Z( K ) = Z( 4*K-3 ) 160 CONTINUE* * Sort and compute sum of eigenvalues.* CALL DLASRT( 'D', N, Z, IINFO )* E = ZERO DO 170 K = N, 1, -1 E = E + Z( K ) 170 CONTINUE** Store trace, sum(eigenvalues) and information on performance.* Z( 2*N+1 ) = TRACE Z( 2*N+2 ) = E Z( 2*N+3 ) = DBLE( ITER ) Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 ) Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER ) RETURN** End of DLASQ2* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -