⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlasq2.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLASQ2( N, Z, INFO )**  -- LAPACK routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999 **     .. Scalar Arguments ..      INTEGER            INFO, N*     ..*     .. Array Arguments ..      DOUBLE PRECISION   Z( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLASQ2 computes all the eigenvalues of the symmetric positive *  definite tridiagonal matrix associated with the qd array Z to high*  relative accuracy are computed to high relative accuracy, in the*  absence of denormalization, underflow and overflow.**  To see the relation of Z to the tridiagonal matrix, let L be a*  unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and*  let U be an upper bidiagonal matrix with 1's above and diagonal*  Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the*  symmetric tridiagonal to which it is similar.**  Note : DLASQ2 defines a logical variable, IEEE, which is true*  on machines which follow ieee-754 floating-point standard in their*  handling of infinities and NaNs, and false otherwise. This variable*  is passed to DLASQ3.**  Arguments*  =========**  N     (input) INTEGER*        The number of rows and columns in the matrix. N >= 0.**  Z     (workspace) DOUBLE PRECISION array, dimension ( 4*N )*        On entry Z holds the qd array. On exit, entries 1 to N hold*        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the*        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If*        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )*        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of*        shifts that failed.**  INFO  (output) INTEGER*        = 0: successful exit*        < 0: if the i-th argument is a scalar and had an illegal*             value, then INFO = -i, if the i-th argument is an*             array and the j-entry had an illegal value, then*             INFO = -(i*100+j)*        > 0: the algorithm failed*              = 1, a split was marked by a positive value in E*              = 2, current block of Z not diagonalized after 30*N*                   iterations (in inner while loop)*              = 3, termination criterion of outer while loop not met *                   (program created more than N unreduced blocks)**  Further Details*  ===============*  Local Variables: I0:N0 defines a current unreduced segment of Z.*  The shifts are accumulated in SIGMA. Iteration count is in ITER.*  Ping-pong is controlled by PP (alternates between 0 and 1).**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   CBIAS      PARAMETER          ( CBIAS = 1.50D0 )      DOUBLE PRECISION   ZERO, HALF, ONE, TWO, FOUR, HUNDRD      PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,     $                     TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 )*     ..*     .. Local Scalars ..      LOGICAL            IEEE      INTEGER            I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,      $                   N0, NBIG, NDIV, NFAIL, PP, SPLT      DOUBLE PRECISION   D, DESIG, DMIN, E, EMAX, EMIN, EPS, OLDEMN,      $                   QMAX, QMIN, S, SAFMIN, SIGMA, T, TEMP, TOL,      $                   TOL2, TRACE, ZMAX*     ..*     .. External Subroutines ..      EXTERNAL           DLASQ3, DLASRT, XERBLA*     ..*     .. External Functions ..      INTEGER            ILAENV      DOUBLE PRECISION   DLAMCH      EXTERNAL           DLAMCH, ILAENV*     ..*     .. Intrinsic Functions ..      INTRINSIC          DBLE, MAX, MIN, SQRT*     ..*     .. Executable Statements ..*      *     Test the input arguments.*     (in case DLASQ2 is not called by DLASQ1)*      OPS = OPS + DBLE( 2 )      INFO = 0      EPS = DLAMCH( 'Precision' )      SAFMIN = DLAMCH( 'Safe minimum' )      TOL = EPS*HUNDRD      TOL2 = TOL**2*      IF( N.LT.0 ) THEN         INFO = -1         CALL XERBLA( 'DLASQ2', 1 )         RETURN      ELSE IF( N.EQ.0 ) THEN         RETURN      ELSE IF( N.EQ.1 ) THEN**        1-by-1 case.*         IF( Z( 1 ).LT.ZERO ) THEN            INFO = -201            CALL XERBLA( 'DLASQ2', 2 )         END IF         RETURN      ELSE IF( N.EQ.2 ) THEN**        2-by-2 case.*         IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN            INFO = -2            CALL XERBLA( 'DLASQ2', 2 )            RETURN         ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN            D = Z( 3 )            Z( 3 ) = Z( 1 )            Z( 1 ) = D         END IF         OPS = OPS + DBLE( 4 )         Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )         IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN            OPS = OPS + DBLE( 16 )            T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) )             S = Z( 3 )*( Z( 2 ) / T )            IF( S.LE.T ) THEN               S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )            ELSE               S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )            END IF            T = Z( 1 ) + ( S+Z( 2 ) )            Z( 3 ) = Z( 3 )*( Z( 1 ) / T )            Z( 1 ) = T         END IF         Z( 2 ) = Z( 3 )         Z( 6 ) = Z( 2 ) + Z( 1 )         RETURN      END IF**     Check for negative data and compute sums of q's and e's.*      Z( 2*N ) = ZERO      EMIN = Z( 2 )      QMAX = ZERO      ZMAX = ZERO      D = ZERO      E = ZERO*      OPS = OPS + DBLE( 2*N )      DO 10 K = 1, 2*( N-1 ), 2         IF( Z( K ).LT.ZERO ) THEN            INFO = -( 200+K )            CALL XERBLA( 'DLASQ2', 2 )            RETURN         ELSE IF( Z( K+1 ).LT.ZERO ) THEN            INFO = -( 200+K+1 )            CALL XERBLA( 'DLASQ2', 2 )            RETURN         END IF         D = D + Z( K )         E = E + Z( K+1 )         QMAX = MAX( QMAX, Z( K ) )         EMIN = MIN( EMIN, Z( K+1 ) )         ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )   10 CONTINUE      IF( Z( 2*N-1 ).LT.ZERO ) THEN         INFO = -( 200+2*N-1 )         CALL XERBLA( 'DLASQ2', 2 )         RETURN      END IF      D = D + Z( 2*N-1 )      QMAX = MAX( QMAX, Z( 2*N-1 ) )      ZMAX = MAX( QMAX, ZMAX )**     Check for diagonality.*      IF( E.EQ.ZERO ) THEN         DO 20 K = 2, N            Z( K ) = Z( 2*K-1 )   20    CONTINUE         CALL DLASRT( 'D', N, Z, IINFO )         Z( 2*N-1 ) = D         RETURN      END IF*      TRACE = D + E**     Check for zero data.*      IF( TRACE.EQ.ZERO ) THEN         Z( 2*N-1 ) = ZERO         RETURN      END IF*         *     Check whether the machine is IEEE conformable.*               IEEE = ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.     $       ILAENV( 11, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1      *         *     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).*      DO 30 K = 2*N, 2, -2         Z( 2*K ) = ZERO          Z( 2*K-1 ) = Z( K )          Z( 2*K-2 ) = ZERO          Z( 2*K-3 ) = Z( K-1 )    30 CONTINUE*      I0 = 1      N0 = N**     Reverse the qd-array, if warranted.*      OPS = OPS + DBLE( 1 )      IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN         IPN4 = 4*( I0+N0 )         DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4            TEMP = Z( I4-3 )            Z( I4-3 ) = Z( IPN4-I4-3 )            Z( IPN4-I4-3 ) = TEMP            TEMP = Z( I4-1 )            Z( I4-1 ) = Z( IPN4-I4-5 )            Z( IPN4-I4-5 ) = TEMP   40    CONTINUE      END IF**     Initial split checking via dqd and Li's test.*      PP = 0*      DO 80 K = 1, 2*         OPS = OPS + DBLE( N0-I0 )         D = Z( 4*N0+PP-3 )         DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4            IF( Z( I4-1 ).LE.TOL2*D ) THEN               Z( I4-1 ) = -ZERO               D = Z( I4-3 )            ELSE               OPS = OPS + DBLE( 3 )               D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )            END IF   50    CONTINUE**        dqd maps Z to ZZ plus Li's test.*         OPS = OPS + DBLE( N0-I0 )         EMIN = Z( 4*I0+PP+1 )         D = Z( 4*I0+PP-3 )         DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4            Z( I4-2*PP-2 ) = D + Z( I4-1 )            IF( Z( I4-1 ).LE.TOL2*D ) THEN               Z( I4-1 ) = -ZERO               Z( I4-2*PP-2 ) = D               Z( I4-2*PP ) = ZERO               D = Z( I4+1 )            ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.     $               SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN               OPS = OPS + DBLE( 5 )               TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )               Z( I4-2*PP ) = Z( I4-1 )*TEMP               D = D*TEMP            ELSE               OPS = OPS + DBLE( 5 )               Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )               D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )            END IF            EMIN = MIN( EMIN, Z( I4-2*PP ) )   60    CONTINUE          Z( 4*N0-PP-2 ) = D**        Now find qmax.*         QMAX = Z( 4*I0-PP-2 )         DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4            QMAX = MAX( QMAX, Z( I4 ) )   70    CONTINUE**        Prepare for the next iteration on K.*         PP = 1 - PP   80 CONTINUE*      ITER = 2      NFAIL = 0      NDIV = 2*( N0-I0 )*      DO 140 IWHILA = 1, N + 1         IF( N0.LT.1 )      $      GO TO 150**        While array unfinished do **        E(N0) holds the value of SIGMA when submatrix in I0:N0*        splits from the rest of the array, but is negated.*               DESIG = ZERO         IF( N0.EQ.N ) THEN            SIGMA = ZERO         ELSE            SIGMA = -Z( 4*N0-1 )         END IF         IF( SIGMA.LT.ZERO ) THEN            INFO = 1            RETURN         END IF**        Find last unreduced submatrix's top index I0, find QMAX and*        EMIN. Find Gershgorin-type bound if Q's much greater than E's.*         EMAX = ZERO          IF( N0.GT.I0 ) THEN            EMIN = ABS( Z( 4*N0-5 ) )         ELSE            EMIN = ZERO         END IF         QMIN = Z( 4*N0-3 )         QMAX = QMIN         DO 90 I4 = 4*N0, 8, -4            IF( Z( I4-5 ).LE.ZERO )     $         GO TO 100            OPS = OPS + DBLE( 2 )            IF( QMIN.GE.FOUR*EMAX ) THEN               QMIN = MIN( QMIN, Z( I4-3 ) )               EMAX = MAX( EMAX, Z( I4-5 ) )            END IF            QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )            EMIN = MIN( EMIN, Z( I4-5 ) )   90    CONTINUE         I4 = 4 *  100    CONTINUE         I0 = I4 / 4**        Store EMIN for passing to DLASQ3.*         Z( 4*N0-1 ) = EMIN**        Put -(initial shift) into DMIN.*         OPS = OPS + DBLE( 5 )         DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )**        Now I0:N0 is unreduced. PP = 0 for ping, PP = 1 for pong.*         PP = 0 *         NBIG = 30*( N0-I0+1 )         DO 120 IWHILB = 1, NBIG            IF( I0.GT.N0 )      $         GO TO 130**           While submatrix unfinished take a good dqds step.*            CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,     $                   ITER, NDIV, IEEE )*	    PP = 1 - PP**           When EMIN is very small check for splits.*            IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN               OPS = OPS + DBLE( 2 )               IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.     $             Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN                  SPLT = I0 - 1                  QMAX = Z( 4*I0-3 )                  EMIN = Z( 4*I0-1 )                  OLDEMN = Z( 4*I0 )                  DO 110 I4 = 4*I0, 4*( N0-3 ), 4                     OPS = OPS + DBLE( 1 )                     IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.     $                   Z( I4-1 ).LE.TOL2*SIGMA ) THEN                        Z( I4-1 ) = -SIGMA                        SPLT = I4 / 4                        QMAX = ZERO                        EMIN = Z( I4+3 )                        OLDEMN = Z( I4+4 )                     ELSE                        QMAX = MAX( QMAX, Z( I4+1 ) )                        EMIN = MIN( EMIN, Z( I4-1 ) )                        OLDEMN = MIN( OLDEMN, Z( I4 ) )                     END IF  110             CONTINUE                  Z( 4*N0-1 ) = EMIN                  Z( 4*N0 ) = OLDEMN                  I0 = SPLT + 1               END IF            END IF*  120    CONTINUE*         INFO = 2         RETURN**        end IWHILB*  130    CONTINUE*  140 CONTINUE*      INFO = 3      RETURN**     end IWHILA   *  150 CONTINUE*      *     Move q's to the front.*            DO 160 K = 2, N         Z( K ) = Z( 4*K-3 )  160 CONTINUE*      *     Sort and compute sum of eigenvalues.*      CALL DLASRT( 'D', N, Z, IINFO )*      E = ZERO      DO 170 K = N, 1, -1         E = E + Z( K )  170 CONTINUE**     Store trace, sum(eigenvalues) and information on performance.*      Z( 2*N+1 ) = TRACE       Z( 2*N+2 ) = E      Z( 2*N+3 ) = DBLE( ITER )      Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 )      Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER )      RETURN**     End of DLASQ2*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -