⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlaed7.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,     $                   LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,     $                   PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,     $                   INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     September 30, 1994**     .. Scalar Arguments ..      INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,     $                   QSIZ, TLVLS      DOUBLE PRECISION   RHO*     ..*     .. Array Arguments ..      INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),     $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )      DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),     $                   QSTORE( * ), WORK( * )*     ..*     Common block to return operation count and iteration count*     ITCNT is unchanged, OPS is only incremented*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLAED7 computes the updated eigensystem of a diagonal*  matrix after modification by a rank-one symmetric matrix. This*  routine is used only for the eigenproblem which requires all*  eigenvalues and optionally eigenvectors of a dense symmetric matrix*  that has been reduced to tridiagonal form.  DLAED1 handles*  the case in which all eigenvalues and eigenvectors of a symmetric*  tridiagonal matrix are desired.**    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)**     where Z = Q'u, u is a vector of length N with ones in the*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.**     The eigenvectors of the original matrix are stored in Q, and the*     eigenvalues are in D.  The algorithm consists of three stages:**        The first stage consists of deflating the size of the problem*        when there are multiple eigenvalues or if there is a zero in*        the Z vector.  For each such occurence the dimension of the*        secular equation problem is reduced by one.  This stage is*        performed by the routine DLAED8.**        The second stage consists of calculating the updated*        eigenvalues. This is done by finding the roots of the secular*        equation via the routine DLAED4 (as called by DLAED9).*        This routine also calculates the eigenvectors of the current*        problem.**        The final stage consists of computing the updated eigenvectors*        directly using the updated eigenvalues.  The eigenvectors for*        the current problem are multiplied with the eigenvectors from*        the overall problem.**  Arguments*  =========**  ICOMPQ  (input) INTEGER*          = 0:  Compute eigenvalues only.*          = 1:  Compute eigenvectors of original dense symmetric matrix*                also.  On entry, Q contains the orthogonal matrix used*                to reduce the original matrix to tridiagonal form.**  N      (input) INTEGER*         The dimension of the symmetric tridiagonal matrix.  N >= 0.**  QSIZ   (input) INTEGER*         The dimension of the orthogonal matrix used to reduce*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.**  TLVLS  (input) INTEGER*         The total number of merging levels in the overall divide and*         conquer tree.**  CURLVL (input) INTEGER*         The current level in the overall merge routine,*         0 <= CURLVL <= TLVLS.**  CURPBM (input) INTEGER*         The current problem in the current level in the overall*         merge routine (counting from upper left to lower right).**  D      (input/output) DOUBLE PRECISION array, dimension (N)*         On entry, the eigenvalues of the rank-1-perturbed matrix.*         On exit, the eigenvalues of the repaired matrix.**  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)*         On entry, the eigenvectors of the rank-1-perturbed matrix.*         On exit, the eigenvectors of the repaired tridiagonal matrix.**  LDQ    (input) INTEGER*         The leading dimension of the array Q.  LDQ >= max(1,N).**  INDXQ  (output) INTEGER array, dimension (N)*         The permutation which will reintegrate the subproblem just*         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )*         will be in ascending order.**  RHO    (input) DOUBLE PRECISION*         The subdiagonal element used to create the rank-1*         modification.**  CUTPNT (input) INTEGER*         Contains the location of the last eigenvalue in the leading*         sub-matrix.  min(1,N) <= CUTPNT <= N.**  QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)*         Stores eigenvectors of submatrices encountered during*         divide and conquer, packed together. QPTR points to*         beginning of the submatrices.**  QPTR   (input/output) INTEGER array, dimension (N+2)*         List of indices pointing to beginning of submatrices stored*         in QSTORE. The submatrices are numbered starting at the*         bottom left of the divide and conquer tree, from left to*         right and bottom to top.**  PRMPTR (input) INTEGER array, dimension (N lg N)*         Contains a list of pointers which indicate where in PERM a*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)*         indicates the size of the permutation and also the size of*         the full, non-deflated problem.**  PERM   (input) INTEGER array, dimension (N lg N)*         Contains the permutations (from deflation and sorting) to be*         applied to each eigenblock.**  GIVPTR (input) INTEGER array, dimension (N lg N)*         Contains a list of pointers which indicate where in GIVCOL a*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)*         indicates the number of Givens rotations.**  GIVCOL (input) INTEGER array, dimension (2, N lg N)*         Each pair of numbers indicates a pair of columns to take place*         in a Givens rotation.**  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)*         Each number indicates the S value to be used in the*         corresponding Givens rotation.**  WORK   (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)**  IWORK  (workspace) INTEGER array, dimension (4*N)**  INFO   (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = 1, an eigenvalue did not converge**  Further Details*  ===============**  Based on contributions by*     Jeff Rutter, Computer Science Division, University of California*     at Berkeley, USA**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE, ZERO      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )*     ..*     .. Local Scalars ..      INTEGER            COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,     $                   IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR*     ..*     .. External Subroutines ..      EXTERNAL           DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          DBLE, MAX, MIN*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN         INFO = -4      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN         INFO = -9      ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN         INFO = -12      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLAED7', -INFO )         RETURN      END IF**     Quick return if possible*      IF( N.EQ.0 )     $   RETURN**     The following values are for bookkeeping purposes only.  They are*     integer pointers which indicate the portion of the workspace*     used by a particular array in DLAED8 and DLAED9.*      IF( ICOMPQ.EQ.1 ) THEN         LDQ2 = QSIZ      ELSE         LDQ2 = N      END IF*      IZ = 1      IDLMDA = IZ + N      IW = IDLMDA + N      IQ2 = IW + N      IS = IQ2 + N*LDQ2*      INDX = 1      INDXC = INDX + N      COLTYP = INDXC + N      INDXP = COLTYP + N**     Form the z-vector which consists of the last row of Q_1 and the*     first row of Q_2.*      PTR = 1 + 2**TLVLS      DO 10 I = 1, CURLVL - 1         PTR = PTR + 2**( TLVLS-I )   10 CONTINUE      CURR = PTR + CURPBM      CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,     $             GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),     $             WORK( IZ+N ), INFO )**     When solving the final problem, we no longer need the stored data,*     so we will overwrite the data from this level onto the previously*     used storage space.*      IF( CURLVL.EQ.TLVLS ) THEN         QPTR( CURR ) = 1         PRMPTR( CURR ) = 1         GIVPTR( CURR ) = 1      END IF**     Sort and Deflate eigenvalues.*      CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,     $             WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,     $             WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),     $             GIVCOL( 1, GIVPTR( CURR ) ),     $             GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),     $             IWORK( INDX ), INFO )      PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N      GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )**     Solve Secular Equation.*      IF( K.NE.0 ) THEN         CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),     $                WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )         IF( INFO.NE.0 )     $      GO TO 30         IF( ICOMPQ.EQ.1 ) THEN            OPS = OPS + 2*DBLE( QSIZ )*K*K            CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,     $                  QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )         END IF         QPTR( CURR+1 ) = QPTR( CURR ) + K**2**     Prepare the INDXQ sorting permutation.*         N1 = K         N2 = N - K         CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )      ELSE         QPTR( CURR+1 ) = QPTR( CURR )         DO 20 I = 1, N            INDXQ( I ) = I   20    CONTINUE      END IF*   30 CONTINUE      RETURN**     End of DLAED7*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -