📄 dlaed7.f
字号:
SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q, $ LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR, $ PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK, $ INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* September 30, 1994** .. Scalar Arguments .. INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N, $ QSIZ, TLVLS DOUBLE PRECISION RHO* ..* .. Array Arguments .. INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ), $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * ) DOUBLE PRECISION D( * ), GIVNUM( 2, * ), Q( LDQ, * ), $ QSTORE( * ), WORK( * )* ..* Common block to return operation count and iteration count* ITCNT is unchanged, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. DOUBLE PRECISION ITCNT, OPS* ..** Purpose* =======** DLAED7 computes the updated eigensystem of a diagonal* matrix after modification by a rank-one symmetric matrix. This* routine is used only for the eigenproblem which requires all* eigenvalues and optionally eigenvectors of a dense symmetric matrix* that has been reduced to tridiagonal form. DLAED1 handles* the case in which all eigenvalues and eigenvectors of a symmetric* tridiagonal matrix are desired.** T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)** where Z = Q'u, u is a vector of length N with ones in the* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.** The eigenvectors of the original matrix are stored in Q, and the* eigenvalues are in D. The algorithm consists of three stages:** The first stage consists of deflating the size of the problem* when there are multiple eigenvalues or if there is a zero in* the Z vector. For each such occurence the dimension of the* secular equation problem is reduced by one. This stage is* performed by the routine DLAED8.** The second stage consists of calculating the updated* eigenvalues. This is done by finding the roots of the secular* equation via the routine DLAED4 (as called by DLAED9).* This routine also calculates the eigenvectors of the current* problem.** The final stage consists of computing the updated eigenvectors* directly using the updated eigenvalues. The eigenvectors for* the current problem are multiplied with the eigenvectors from* the overall problem.** Arguments* =========** ICOMPQ (input) INTEGER* = 0: Compute eigenvalues only.* = 1: Compute eigenvectors of original dense symmetric matrix* also. On entry, Q contains the orthogonal matrix used* to reduce the original matrix to tridiagonal form.** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** QSIZ (input) INTEGER* The dimension of the orthogonal matrix used to reduce* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.** TLVLS (input) INTEGER* The total number of merging levels in the overall divide and* conquer tree.** CURLVL (input) INTEGER* The current level in the overall merge routine,* 0 <= CURLVL <= TLVLS.** CURPBM (input) INTEGER* The current problem in the current level in the overall* merge routine (counting from upper left to lower right).** D (input/output) DOUBLE PRECISION array, dimension (N)* On entry, the eigenvalues of the rank-1-perturbed matrix.* On exit, the eigenvalues of the repaired matrix.** Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)* On entry, the eigenvectors of the rank-1-perturbed matrix.* On exit, the eigenvectors of the repaired tridiagonal matrix.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max(1,N).** INDXQ (output) INTEGER array, dimension (N)* The permutation which will reintegrate the subproblem just* solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )* will be in ascending order.** RHO (input) DOUBLE PRECISION* The subdiagonal element used to create the rank-1* modification.** CUTPNT (input) INTEGER* Contains the location of the last eigenvalue in the leading* sub-matrix. min(1,N) <= CUTPNT <= N.** QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)* Stores eigenvectors of submatrices encountered during* divide and conquer, packed together. QPTR points to* beginning of the submatrices.** QPTR (input/output) INTEGER array, dimension (N+2)* List of indices pointing to beginning of submatrices stored* in QSTORE. The submatrices are numbered starting at the* bottom left of the divide and conquer tree, from left to* right and bottom to top.** PRMPTR (input) INTEGER array, dimension (N lg N)* Contains a list of pointers which indicate where in PERM a* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)* indicates the size of the permutation and also the size of* the full, non-deflated problem.** PERM (input) INTEGER array, dimension (N lg N)* Contains the permutations (from deflation and sorting) to be* applied to each eigenblock.** GIVPTR (input) INTEGER array, dimension (N lg N)* Contains a list of pointers which indicate where in GIVCOL a* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)* indicates the number of Givens rotations.** GIVCOL (input) INTEGER array, dimension (2, N lg N)* Each pair of numbers indicates a pair of columns to take place* in a Givens rotation.** GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)* Each number indicates the S value to be used in the* corresponding Givens rotation.** WORK (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)** IWORK (workspace) INTEGER array, dimension (4*N)** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: if INFO = 1, an eigenvalue did not converge** Further Details* ===============** Based on contributions by* Jeff Rutter, Computer Science Division, University of California* at Berkeley, USA** =====================================================================** .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )* ..* .. Local Scalars .. INTEGER COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP, $ IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR* ..* .. External Subroutines .. EXTERNAL DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN INFO = -4 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAED7', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 ) $ RETURN** The following values are for bookkeeping purposes only. They are* integer pointers which indicate the portion of the workspace* used by a particular array in DLAED8 and DLAED9.* IF( ICOMPQ.EQ.1 ) THEN LDQ2 = QSIZ ELSE LDQ2 = N END IF* IZ = 1 IDLMDA = IZ + N IW = IDLMDA + N IQ2 = IW + N IS = IQ2 + N*LDQ2* INDX = 1 INDXC = INDX + N COLTYP = INDXC + N INDXP = COLTYP + N** Form the z-vector which consists of the last row of Q_1 and the* first row of Q_2.* PTR = 1 + 2**TLVLS DO 10 I = 1, CURLVL - 1 PTR = PTR + 2**( TLVLS-I ) 10 CONTINUE CURR = PTR + CURPBM CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR, $ GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ), $ WORK( IZ+N ), INFO )** When solving the final problem, we no longer need the stored data,* so we will overwrite the data from this level onto the previously* used storage space.* IF( CURLVL.EQ.TLVLS ) THEN QPTR( CURR ) = 1 PRMPTR( CURR ) = 1 GIVPTR( CURR ) = 1 END IF** Sort and Deflate eigenvalues.* CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT, $ WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2, $ WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ), $ GIVCOL( 1, GIVPTR( CURR ) ), $ GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ), $ IWORK( INDX ), INFO ) PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )** Solve Secular Equation.* IF( K.NE.0 ) THEN CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ), $ WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO ) IF( INFO.NE.0 ) $ GO TO 30 IF( ICOMPQ.EQ.1 ) THEN OPS = OPS + 2*DBLE( QSIZ )*K*K CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2, $ QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ ) END IF QPTR( CURR+1 ) = QPTR( CURR ) + K**2** Prepare the INDXQ sorting permutation.* N1 = K N2 = N - K CALL DLAMRG( N1, N2, D, 1, -1, INDXQ ) ELSE QPTR( CURR+1 ) = QPTR( CURR ) DO 20 I = 1, N INDXQ( I ) = I 20 CONTINUE END IF* 30 CONTINUE RETURN** End of DLAED7* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -