⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlasdq.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,     $                   U, LDU, C, LDC, WORK, INFO )**  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999**     .. Scalar Arguments ..      CHARACTER          UPLO      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE*     ..*     .. Array Arguments ..      DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),     $                   VT( LDVT, * ), WORK( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLASDQ computes the singular value decomposition (SVD) of a real*  (upper or lower) bidiagonal matrix with diagonal D and offdiagonal*  E, accumulating the transformations if desired. Letting B denote*  the input bidiagonal matrix, the algorithm computes orthogonal*  matrices Q and P such that B = Q * S * P' (P' denotes the transpose*  of P). The singular values S are overwritten on D.**  The input matrix U  is changed to U  * Q  if desired.*  The input matrix VT is changed to P' * VT if desired.*  The input matrix C  is changed to Q' * C  if desired.**  See "Computing  Small Singular Values of Bidiagonal Matrices With*  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,*  LAPACK Working Note #3, for a detailed description of the algorithm.**  Arguments*  =========**  UPLO  (input) CHARACTER*1*        On entry, UPLO specifies whether the input bidiagonal matrix*        is upper or lower bidiagonal, and wether it is square are*        not.*           UPLO = 'U' or 'u'   B is upper bidiagonal.*           UPLO = 'L' or 'l'   B is lower bidiagonal.**  SQRE  (input) INTEGER*        = 0: then the input matrix is N-by-N.*        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and*             (N+1)-by-N if UPLU = 'L'.**        The bidiagonal matrix has*        N = NL + NR + 1 rows and*        M = N + SQRE >= N columns.**  N     (input) INTEGER*        On entry, N specifies the number of rows and columns*        in the matrix. N must be at least 0.**  NCVT  (input) INTEGER*        On entry, NCVT specifies the number of columns of*        the matrix VT. NCVT must be at least 0.**  NRU   (input) INTEGER*        On entry, NRU specifies the number of rows of*        the matrix U. NRU must be at least 0.**  NCC   (input) INTEGER*        On entry, NCC specifies the number of columns of*        the matrix C. NCC must be at least 0.**  D     (input/output) DOUBLE PRECISION array, dimension (N)*        On entry, D contains the diagonal entries of the*        bidiagonal matrix whose SVD is desired. On normal exit,*        D contains the singular values in ascending order.**  E     (input/output) DOUBLE PRECISION array.*        dimension is (N-1) if SQRE = 0 and N if SQRE = 1.*        On entry, the entries of E contain the offdiagonal entries*        of the bidiagonal matrix whose SVD is desired. On normal*        exit, E will contain 0. If the algorithm does not converge,*        D and E will contain the diagonal and superdiagonal entries*        of a bidiagonal matrix orthogonally equivalent to the one*        given as input.**  VT    (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)*        On entry, contains a matrix which on exit has been*        premultiplied by P', dimension N-by-NCVT if SQRE = 0*        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).**  LDVT  (input) INTEGER*        On entry, LDVT specifies the leading dimension of VT as*        declared in the calling (sub) program. LDVT must be at*        least 1. If NCVT is nonzero LDVT must also be at least N.**  U     (input/output) DOUBLE PRECISION array, dimension (LDU, N)*        On entry, contains a  matrix which on exit has been*        postmultiplied by Q, dimension NRU-by-N if SQRE = 0*        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).**  LDU   (input) INTEGER*        On entry, LDU  specifies the leading dimension of U as*        declared in the calling (sub) program. LDU must be at*        least max( 1, NRU ) .**  C     (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)*        On entry, contains an N-by-NCC matrix which on exit*        has been premultiplied by Q'  dimension N-by-NCC if SQRE = 0*        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).**  LDC   (input) INTEGER*        On entry, LDC  specifies the leading dimension of C as*        declared in the calling (sub) program. LDC must be at*        least 1. If NCC is nonzero, LDC must also be at least N.**  WORK  (workspace) DOUBLE PRECISION array, dimension (MAX( 1, 4*N ))*        Workspace. Only referenced if one of NCVT, NRU, or NCC is*        nonzero, and if N is at least 2.**  INFO  (output) INTEGER*        On exit, a value of 0 indicates a successful exit.*        If INFO < 0, argument number -INFO is illegal.*        If INFO > 0, the algorithm did not converge, and INFO*        specifies how many superdiagonals did not converge.**  Further Details*  ===============**  Based on contributions by*     Ming Gu and Huan Ren, Computer Science Division, University of*     California at Berkeley, USA**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ZERO      PARAMETER          ( ZERO = 0.0D0 )*     ..*     .. Local Scalars ..      LOGICAL            ROTATE      INTEGER            I, ISUB, IUPLO, J, NP1, SQRE1      DOUBLE PRECISION   CS, R, SMIN, SN*     ..*     .. External Subroutines ..      EXTERNAL           DBDSQR, DLARTG, DLASR, DSWAP, XERBLA*     ..*     .. External Functions ..      LOGICAL            LSAME      EXTERNAL           LSAME*     ..*     .. Intrinsic Functions ..      INTRINSIC          DBLE, MAX*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0      IUPLO = 0      IF( LSAME( UPLO, 'U' ) )     $   IUPLO = 1      IF( LSAME( UPLO, 'L' ) )     $   IUPLO = 2      IF( IUPLO.EQ.0 ) THEN         INFO = -1      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN         INFO = -2      ELSE IF( N.LT.0 ) THEN         INFO = -3      ELSE IF( NCVT.LT.0 ) THEN         INFO = -4      ELSE IF( NRU.LT.0 ) THEN         INFO = -5      ELSE IF( NCC.LT.0 ) THEN         INFO = -6      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.     $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN         INFO = -10      ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN         INFO = -12      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.     $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN         INFO = -14      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DBDSQR', -INFO )         RETURN      END IF      IF( N.EQ.0 )     $   RETURN**     ROTATE is true if any singular vectors desired, false otherwise*      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )      NP1 = N + 1      SQRE1 = SQRE**     If matrix non-square upper bidiagonal, rotate to be lower*     bidiagonal.  The rotations are on the right.*      IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN         OPS = OPS + DBLE( 8*( N-1 ) )         DO 10 I = 1, N - 1            CALL DLARTG( D( I ), E( I ), CS, SN, R )            D( I ) = R            E( I ) = SN*D( I+1 )            D( I+1 ) = CS*D( I+1 )            IF( ROTATE ) THEN               WORK( I ) = CS               WORK( N+I ) = SN            END IF   10    CONTINUE         OPS = OPS + DBLE( 6 )         CALL DLARTG( D( N ), E( N ), CS, SN, R )         D( N ) = R         E( N ) = ZERO         IF( ROTATE ) THEN            WORK( N ) = CS            WORK( N+N ) = SN         END IF         IUPLO = 2         SQRE1 = 0**        Update singular vectors if desired.*         IF( NCVT.GT.0 ) THEN            OPS = OPS + DBLE( 6*( NP1-1 )*NCVT )            CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),     $                  WORK( NP1 ), VT, LDVT )         END IF      END IF**     If matrix lower bidiagonal, rotate to be upper bidiagonal*     by applying Givens rotations on the left.*      IF( IUPLO.EQ.2 ) THEN         OPS = OPS + DBLE( 8*( N-1 ) )         DO 20 I = 1, N - 1            CALL DLARTG( D( I ), E( I ), CS, SN, R )            D( I ) = R            E( I ) = SN*D( I+1 )            D( I+1 ) = CS*D( I+1 )            IF( ROTATE ) THEN               WORK( I ) = CS               WORK( N+I ) = SN            END IF   20    CONTINUE**        If matrix (N+1)-by-N lower bidiagonal, one additional*        rotation is needed.*         IF( SQRE1.EQ.1 ) THEN            OPS = OPS + DBLE( 6 )            CALL DLARTG( D( N ), E( N ), CS, SN, R )            D( N ) = R            IF( ROTATE ) THEN               WORK( N ) = CS               WORK( N+N ) = SN            END IF         END IF**        Update singular vectors if desired.*         IF( NRU.GT.0 ) THEN            IF( SQRE1.EQ.0 ) THEN               OPS = OPS + DBLE( 6*( N-1 )*NRU )               CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),     $                     WORK( NP1 ), U, LDU )            ELSE               OPS = OPS + DBLE( 6*N*NRU )               CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),     $                     WORK( NP1 ), U, LDU )            END IF         END IF         IF( NCC.GT.0 ) THEN            IF( SQRE1.EQ.0 ) THEN               OPS = OPS + DBLE( 6*( N-1 )*NCC )               CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),     $                     WORK( NP1 ), C, LDC )            ELSE               OPS = OPS + DBLE( 6*N*NCC )               CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),     $                     WORK( NP1 ), C, LDC )            END IF         END IF      END IF**     Call DBDSQR to compute the SVD of the reduced real*     N-by-N upper bidiagonal matrix.*      CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,     $             LDC, WORK, INFO )**     Sort the singular values into ascending order (insertion sort on*     singular values, but only one transposition per singular vector)*      DO 40 I = 1, N**        Scan for smallest D(I).*         ISUB = I         SMIN = D( I )         DO 30 J = I + 1, N            IF( D( J ).LT.SMIN ) THEN               ISUB = J               SMIN = D( J )            END IF   30    CONTINUE         IF( ISUB.NE.I ) THEN**           Swap singular values and vectors.*            D( ISUB ) = D( I )            D( I ) = SMIN            IF( NCVT.GT.0 )     $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )            IF( NRU.GT.0 )     $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )            IF( NCC.GT.0 )     $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )         END IF   40 CONTINUE*      RETURN**     End of DLASDQ*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -