📄 dlasdq.f
字号:
SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT, $ U, LDU, C, LDC, WORK, INFO )** -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* October 31, 1999** .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE* ..* .. Array Arguments .. DOUBLE PRECISION C( LDC, * ), D( * ), E( * ), U( LDU, * ), $ VT( LDVT, * ), WORK( * )* ..* .. Common block to return operation count .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. DOUBLE PRECISION ITCNT, OPS* ..** Purpose* =======** DLASDQ computes the singular value decomposition (SVD) of a real* (upper or lower) bidiagonal matrix with diagonal D and offdiagonal* E, accumulating the transformations if desired. Letting B denote* the input bidiagonal matrix, the algorithm computes orthogonal* matrices Q and P such that B = Q * S * P' (P' denotes the transpose* of P). The singular values S are overwritten on D.** The input matrix U is changed to U * Q if desired.* The input matrix VT is changed to P' * VT if desired.* The input matrix C is changed to Q' * C if desired.** See "Computing Small Singular Values of Bidiagonal Matrices With* Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,* LAPACK Working Note #3, for a detailed description of the algorithm.** Arguments* =========** UPLO (input) CHARACTER*1* On entry, UPLO specifies whether the input bidiagonal matrix* is upper or lower bidiagonal, and wether it is square are* not.* UPLO = 'U' or 'u' B is upper bidiagonal.* UPLO = 'L' or 'l' B is lower bidiagonal.** SQRE (input) INTEGER* = 0: then the input matrix is N-by-N.* = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and* (N+1)-by-N if UPLU = 'L'.** The bidiagonal matrix has* N = NL + NR + 1 rows and* M = N + SQRE >= N columns.** N (input) INTEGER* On entry, N specifies the number of rows and columns* in the matrix. N must be at least 0.** NCVT (input) INTEGER* On entry, NCVT specifies the number of columns of* the matrix VT. NCVT must be at least 0.** NRU (input) INTEGER* On entry, NRU specifies the number of rows of* the matrix U. NRU must be at least 0.** NCC (input) INTEGER* On entry, NCC specifies the number of columns of* the matrix C. NCC must be at least 0.** D (input/output) DOUBLE PRECISION array, dimension (N)* On entry, D contains the diagonal entries of the* bidiagonal matrix whose SVD is desired. On normal exit,* D contains the singular values in ascending order.** E (input/output) DOUBLE PRECISION array.* dimension is (N-1) if SQRE = 0 and N if SQRE = 1.* On entry, the entries of E contain the offdiagonal entries* of the bidiagonal matrix whose SVD is desired. On normal* exit, E will contain 0. If the algorithm does not converge,* D and E will contain the diagonal and superdiagonal entries* of a bidiagonal matrix orthogonally equivalent to the one* given as input.** VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)* On entry, contains a matrix which on exit has been* premultiplied by P', dimension N-by-NCVT if SQRE = 0* and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).** LDVT (input) INTEGER* On entry, LDVT specifies the leading dimension of VT as* declared in the calling (sub) program. LDVT must be at* least 1. If NCVT is nonzero LDVT must also be at least N.** U (input/output) DOUBLE PRECISION array, dimension (LDU, N)* On entry, contains a matrix which on exit has been* postmultiplied by Q, dimension NRU-by-N if SQRE = 0* and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).** LDU (input) INTEGER* On entry, LDU specifies the leading dimension of U as* declared in the calling (sub) program. LDU must be at* least max( 1, NRU ) .** C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)* On entry, contains an N-by-NCC matrix which on exit* has been premultiplied by Q' dimension N-by-NCC if SQRE = 0* and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).** LDC (input) INTEGER* On entry, LDC specifies the leading dimension of C as* declared in the calling (sub) program. LDC must be at* least 1. If NCC is nonzero, LDC must also be at least N.** WORK (workspace) DOUBLE PRECISION array, dimension (MAX( 1, 4*N ))* Workspace. Only referenced if one of NCVT, NRU, or NCC is* nonzero, and if N is at least 2.** INFO (output) INTEGER* On exit, a value of 0 indicates a successful exit.* If INFO < 0, argument number -INFO is illegal.* If INFO > 0, the algorithm did not converge, and INFO* specifies how many superdiagonals did not converge.** Further Details* ===============** Based on contributions by* Ming Gu and Huan Ren, Computer Science Division, University of* California at Berkeley, USA** =====================================================================** .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 )* ..* .. Local Scalars .. LOGICAL ROTATE INTEGER I, ISUB, IUPLO, J, NP1, SQRE1 DOUBLE PRECISION CS, R, SMIN, SN* ..* .. External Subroutines .. EXTERNAL DBDSQR, DLARTG, DLASR, DSWAP, XERBLA* ..* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* ..* .. Intrinsic Functions .. INTRINSIC DBLE, MAX* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0 IUPLO = 0 IF( LSAME( UPLO, 'U' ) ) $ IUPLO = 1 IF( LSAME( UPLO, 'L' ) ) $ IUPLO = 2 IF( IUPLO.EQ.0 ) THEN INFO = -1 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NCVT.LT.0 ) THEN INFO = -4 ELSE IF( NRU.LT.0 ) THEN INFO = -5 ELSE IF( NCC.LT.0 ) THEN INFO = -6 ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR. $ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN INFO = -10 ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN INFO = -12 ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR. $ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN INFO = -14 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DBDSQR', -INFO ) RETURN END IF IF( N.EQ.0 ) $ RETURN** ROTATE is true if any singular vectors desired, false otherwise* ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 ) NP1 = N + 1 SQRE1 = SQRE** If matrix non-square upper bidiagonal, rotate to be lower* bidiagonal. The rotations are on the right.* IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN OPS = OPS + DBLE( 8*( N-1 ) ) DO 10 I = 1, N - 1 CALL DLARTG( D( I ), E( I ), CS, SN, R ) D( I ) = R E( I ) = SN*D( I+1 ) D( I+1 ) = CS*D( I+1 ) IF( ROTATE ) THEN WORK( I ) = CS WORK( N+I ) = SN END IF 10 CONTINUE OPS = OPS + DBLE( 6 ) CALL DLARTG( D( N ), E( N ), CS, SN, R ) D( N ) = R E( N ) = ZERO IF( ROTATE ) THEN WORK( N ) = CS WORK( N+N ) = SN END IF IUPLO = 2 SQRE1 = 0** Update singular vectors if desired.* IF( NCVT.GT.0 ) THEN OPS = OPS + DBLE( 6*( NP1-1 )*NCVT ) CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ), $ WORK( NP1 ), VT, LDVT ) END IF END IF** If matrix lower bidiagonal, rotate to be upper bidiagonal* by applying Givens rotations on the left.* IF( IUPLO.EQ.2 ) THEN OPS = OPS + DBLE( 8*( N-1 ) ) DO 20 I = 1, N - 1 CALL DLARTG( D( I ), E( I ), CS, SN, R ) D( I ) = R E( I ) = SN*D( I+1 ) D( I+1 ) = CS*D( I+1 ) IF( ROTATE ) THEN WORK( I ) = CS WORK( N+I ) = SN END IF 20 CONTINUE** If matrix (N+1)-by-N lower bidiagonal, one additional* rotation is needed.* IF( SQRE1.EQ.1 ) THEN OPS = OPS + DBLE( 6 ) CALL DLARTG( D( N ), E( N ), CS, SN, R ) D( N ) = R IF( ROTATE ) THEN WORK( N ) = CS WORK( N+N ) = SN END IF END IF** Update singular vectors if desired.* IF( NRU.GT.0 ) THEN IF( SQRE1.EQ.0 ) THEN OPS = OPS + DBLE( 6*( N-1 )*NRU ) CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), $ WORK( NP1 ), U, LDU ) ELSE OPS = OPS + DBLE( 6*N*NRU ) CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ), $ WORK( NP1 ), U, LDU ) END IF END IF IF( NCC.GT.0 ) THEN IF( SQRE1.EQ.0 ) THEN OPS = OPS + DBLE( 6*( N-1 )*NCC ) CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), $ WORK( NP1 ), C, LDC ) ELSE OPS = OPS + DBLE( 6*N*NCC ) CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ), $ WORK( NP1 ), C, LDC ) END IF END IF END IF** Call DBDSQR to compute the SVD of the reduced real* N-by-N upper bidiagonal matrix.* CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C, $ LDC, WORK, INFO )** Sort the singular values into ascending order (insertion sort on* singular values, but only one transposition per singular vector)* DO 40 I = 1, N** Scan for smallest D(I).* ISUB = I SMIN = D( I ) DO 30 J = I + 1, N IF( D( J ).LT.SMIN ) THEN ISUB = J SMIN = D( J ) END IF 30 CONTINUE IF( ISUB.NE.I ) THEN** Swap singular values and vectors.* D( ISUB ) = D( I ) D( I ) = SMIN IF( NCVT.GT.0 ) $ CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT ) IF( NRU.GT.0 ) $ CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 ) IF( NCC.GT.0 ) $ CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC ) END IF 40 CONTINUE* RETURN** End of DLASDQ* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -