📄 slasd3.f
字号:
SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, $ LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, $ INFO )** -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --* Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,* Courant Institute, NAG Ltd., and Rice University* October 31, 1999** .. Scalar Arguments .. INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, $ SQRE* ..* .. Array Arguments .. INTEGER CTOT( * ), IDXC( * ) REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), $ Z( * )* ..* .. Common block to return operation count .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** SLASD3 finds all the square roots of the roots of the secular* equation, as defined by the values in D and Z. It makes the* appropriate calls to SLASD4 and then updates the singular* vectors by matrix multiplication.** This code makes very mild assumptions about floating point* arithmetic. It will work on machines with a guard digit in* add/subtract, or on those binary machines without guard digits* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.* It could conceivably fail on hexadecimal or decimal machines* without guard digits, but we know of none.** SLASD3 is called from SLASD1.** Arguments* =========** NL (input) INTEGER* The row dimension of the upper block. NL >= 1.** NR (input) INTEGER* The row dimension of the lower block. NR >= 1.** SQRE (input) INTEGER* = 0: the lower block is an NR-by-NR square matrix.* = 1: the lower block is an NR-by-(NR+1) rectangular matrix.** The bidiagonal matrix has N = NL + NR + 1 rows and* M = N + SQRE >= N columns.** K (input) INTEGER* The size of the secular equation, 1 =< K = < N.** D (output) REAL array, dimension(K)* On exit the square roots of the roots of the secular equation,* in ascending order.** Q (workspace) REAL array,* dimension at least (LDQ,K).** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= K.** DSIGMA (input) REAL array, dimension(K)* The first K elements of this array contain the old roots* of the deflated updating problem. These are the poles* of the secular equation.** U (input) REAL array, dimension (LDU, N)* The last N - K columns of this matrix contain the deflated* left singular vectors.** LDU (input) INTEGER* The leading dimension of the array U. LDU >= N.** U2 (input) REAL array, dimension (LDU2, N)* The first K columns of this matrix contain the non-deflated* left singular vectors for the split problem.** LDU2 (input) INTEGER* The leading dimension of the array U2. LDU2 >= N.** VT (input) REAL array, dimension (LDVT, M)* The last M - K columns of VT' contain the deflated* right singular vectors.** LDVT (input) INTEGER* The leading dimension of the array VT. LDVT >= N.** VT2 (input) REAL array, dimension (LDVT2, N)* The first K columns of VT2' contain the non-deflated* right singular vectors for the split problem.** LDVT2 (input) INTEGER* The leading dimension of the array VT2. LDVT2 >= N.** IDXC (input) INTEGER array, dimension ( N )* The permutation used to arrange the columns of U (and rows of* VT) into three groups: the first group contains non-zero* entries only at and above (or before) NL +1; the second* contains non-zero entries only at and below (or after) NL+2;* and the third is dense. The first column of U and the row of* VT are treated separately, however.** The rows of the singular vectors found by SLASD4* must be likewise permuted before the matrix multiplies can* take place.** CTOT (input) INTEGER array, dimension ( 4 )* A count of the total number of the various types of columns* in U (or rows in VT), as described in IDXC. The fourth column* type is any column which has been deflated.** Z (input) REAL array, dimension (K)* The first K elements of this array contain the components* of the deflation-adjusted updating row vector.** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: if INFO = 1, an singular value did not converge** Further Details* ===============** Based on contributions by* Ming Gu and Huan Ren, Computer Science Division, University of* California at Berkeley, USA** =====================================================================** .. Parameters .. REAL ONE, ZERO, NEGONE PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0, NEGONE = -1.0E0 )* ..* .. Local Scalars .. INTEGER CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1 REAL RHO, TEMP* ..* .. External Functions .. REAL SLAMC3, SNRM2, SOPBL3 EXTERNAL SLAMC3, SNRM2, SOPBL3* ..* .. External Subroutines .. EXTERNAL SCOPY, SGEMM, SLACPY, SLASCL, SLASD4, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC REAL, ABS, MAX, SIGN, SQRT* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( NL.LT.1 ) THEN INFO = -1 ELSE IF( NR.LT.1 ) THEN INFO = -2 ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN INFO = -3 END IF* N = NL + NR + 1 M = N + SQRE NLP1 = NL + 1 NLP2 = NL + 2* IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN INFO = -4 ELSE IF( LDQ.LT.K ) THEN INFO = -7 ELSE IF( LDU.LT.N ) THEN INFO = -10 ELSE IF( LDU2.LT.N ) THEN INFO = -12 ELSE IF( LDVT.LT.M ) THEN INFO = -14 ELSE IF( LDVT2.LT.M ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLASD3', -INFO ) RETURN END IF** Quick return if possible* IF( K.EQ.1 ) THEN D( 1 ) = ABS( Z( 1 ) ) CALL SCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT ) IF( Z( 1 ).GT.ZERO ) THEN CALL SCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 ) ELSE DO 10 I = 1, N U( I, 1 ) = -U2( I, 1 ) 10 CONTINUE END IF RETURN END IF** Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can* be computed with high relative accuracy (barring over/underflow).* This is a problem on machines without a guard digit in* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),* which on any of these machines zeros out the bottommost* bit of DSIGMA(I) if it is 1; this makes the subsequent* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation* occurs. On binary machines with a guard digit (almost all* machines) it does not change DSIGMA(I) at all. On hexadecimal* and decimal machines with a guard digit, it slightly* changes the bottommost bits of DSIGMA(I). It does not account* for hexadecimal or decimal machines without guard digits* (we know of none). We use a subroutine call to compute* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating* this code.* DO 20 I = 1, K DSIGMA( I ) = SLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I ) 20 CONTINUE** Keep a copy of Z.* CALL SCOPY( K, Z, 1, Q, 1 )** Normalize Z.* OPS = OPS + REAL( K*3 + 1) RHO = SNRM2( K, Z, 1 ) CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO ) RHO = RHO*RHO** Find the new singular values.* DO 30 J = 1, K CALL SLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ), $ VT( 1, J ), INFO )** If the zero finder fails, the computation is terminated.* IF( INFO.NE.0 ) THEN RETURN END IF 30 CONTINUE** Compute updated Z.* OPS = OPS + REAL( K*2 ) DO 60 I = 1, K Z( I ) = U( I, K )*VT( I, K ) OPS = OPS + REAL( (I-1)*6 ) DO 40 J = 1, I - 1 Z( I ) = Z( I )*( U( I, J )*VT( I, J ) / $ ( DSIGMA( I )-DSIGMA( J ) ) / $ ( DSIGMA( I )+DSIGMA( J ) ) ) 40 CONTINUE OPS = OPS + REAL( (K-I)*6 ) DO 50 J = I, K - 1 Z( I ) = Z( I )*( U( I, J )*VT( I, J ) / $ ( DSIGMA( I )-DSIGMA( J+1 ) ) / $ ( DSIGMA( I )+DSIGMA( J+1 ) ) ) 50 CONTINUE Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) ) 60 CONTINUE** Compute left singular vectors of the modified diagonal matrix,* and store related information for the right singular vectors.* OPS = OPS + REAL( K*(3+K*2) + MAX(0,(K-1)*4) ) DO 90 I = 1, K VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I ) U( 1, I ) = NEGONE DO 70 J = 2, K VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I ) U( J, I ) = DSIGMA( J )*VT( J, I ) 70 CONTINUE TEMP = SNRM2( K, U( 1, I ), 1 ) Q( 1, I ) = U( 1, I ) / TEMP DO 80 J = 2, K JC = IDXC( J ) Q( J, I ) = U( JC, I ) / TEMP 80 CONTINUE 90 CONTINUE** Update the left singular vector matrix.* IF( K.EQ.2 ) THEN OPS = OPS + SOPBL3( 'SGEMM ', N, K, K ) CALL SGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U, $ LDU ) GO TO 100 END IF IF( CTOT( 1 ).GT.0 ) THEN OPS = OPS + SOPBL3( 'SGEMM ', NL, K, CTOT( 1 ) ) CALL SGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2, $ Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU ) IF( CTOT( 3 ).GT.0 ) THEN KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) OPS = OPS + SOPBL3( 'SGEMM ', NL, K, CTOT( 3 ) ) CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ), $ LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU ) END IF ELSE IF( CTOT( 3 ).GT.0 ) THEN KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) OPS = OPS + SOPBL3( 'SGEMM ', NL, K, CTOT( 3 ) ) CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ), $ LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU ) ELSE CALL SLACPY( 'F', NL, K, U2, LDU2, U, LDU ) END IF CALL SCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU ) KTEMP = 2 + CTOT( 1 ) CTEMP = CTOT( 2 ) + CTOT( 3 ) OPS = OPS + SOPBL3( 'SGEMM ', NR, K, CTEMP ) CALL SGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2, $ Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )** Generate the right singular vectors.* 100 CONTINUE OPS = OPS + REAL( K*(K*2+1) + MAX(0,K-1) ) DO 120 I = 1, K TEMP = SNRM2( K, VT( 1, I ), 1 ) Q( I, 1 ) = VT( 1, I ) / TEMP DO 110 J = 2, K JC = IDXC( J ) Q( I, J ) = VT( JC, I ) / TEMP 110 CONTINUE 120 CONTINUE** Update the right singular vector matrix.* IF( K.EQ.2 ) THEN OPS = OPS + SOPBL3( 'SGEMM ', K, M, K ) CALL SGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO, $ VT, LDVT ) RETURN END IF KTEMP = 1 + CTOT( 1 ) OPS = OPS + SOPBL3( 'SGEMM ', K, NLP1, KTEMP ) CALL SGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ, $ VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT ) KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) OPS = OPS + SOPBL3( 'SGEMM ', K, NLP1, CTOT( 3 ) ) IF( KTEMP.LE.LDVT2 ) $ CALL SGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ), $ LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ), $ LDVT )* KTEMP = CTOT( 1 ) + 1 NRP1 = NR + SQRE IF( KTEMP.GT.1 ) THEN DO 130 I = 1, K Q( I, KTEMP ) = Q( I, 1 ) 130 CONTINUE DO 140 I = NLP2, M VT2( KTEMP, I ) = VT2( 1, I ) 140 CONTINUE END IF CTEMP = 1 + CTOT( 2 ) + CTOT( 3 ) OPS = OPS + SOPBL3( 'SGEMM ', K, NRP1, CTEMP ) CALL SGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ, $ VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )* RETURN** End of SLASD3* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -