📄 slaed3.f
字号:
SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX, $ CTOT, W, S, INFO )** -- LAPACK routine (instrumented to count operations, version 3.0) --* Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,* Courant Institute, NAG Ltd., and Rice University* June 30, 1999** .. Scalar Arguments .. INTEGER INFO, K, LDQ, N, N1 REAL RHO* ..* .. Array Arguments .. INTEGER CTOT( * ), INDX( * ) REAL D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), $ S( * ), W( * )* ..* Common block to return operation count and iteration count* ITCNT is unchanged, OPS is only incremented* .. Common blocks .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** SLAED3 finds the roots of the secular equation, as defined by the* values in D, W, and RHO, between 1 and K. It makes the* appropriate calls to SLAED4 and then updates the eigenvectors by* multiplying the matrix of eigenvectors of the pair of eigensystems* being combined by the matrix of eigenvectors of the K-by-K system* which is solved here.** This code makes very mild assumptions about floating point* arithmetic. It will work on machines with a guard digit in* add/subtract, or on those binary machines without guard digits* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.* It could conceivably fail on hexadecimal or decimal machines* without guard digits, but we know of none.** Arguments* =========** K (input) INTEGER* The number of terms in the rational function to be solved by* SLAED4. K >= 0.** N (input) INTEGER* The number of rows and columns in the Q matrix.* N >= K (deflation may result in N>K).** N1 (input) INTEGER* The location of the last eigenvalue in the leading submatrix.* min(1,N) <= N1 <= N/2.** D (output) REAL array, dimension (N)* D(I) contains the updated eigenvalues for* 1 <= I <= K.** Q (output) REAL array, dimension (LDQ,N)* Initially the first K columns are used as workspace.* On output the columns 1 to K contain* the updated eigenvectors.** LDQ (input) INTEGER* The leading dimension of the array Q. LDQ >= max(1,N).** RHO (input) REAL* The value of the parameter in the rank one update equation.* RHO >= 0 required.** DLAMDA (input/output) REAL array, dimension (K)* The first K elements of this array contain the old roots* of the deflated updating problem. These are the poles* of the secular equation. May be changed on output by* having lowest order bit set to zero on Cray X-MP, Cray Y-MP,* Cray-2, or Cray C-90, as described above.** Q2 (input) REAL array, dimension (LDQ2, N)* The first K columns of this matrix contain the non-deflated* eigenvectors for the split problem.** INDX (input) INTEGER array, dimension (N)* The permutation used to arrange the columns of the deflated* Q matrix into three groups (see SLAED2).* The rows of the eigenvectors found by SLAED4 must be likewise* permuted before the matrix multiply can take place.** CTOT (input) INTEGER array, dimension (4)* A count of the total number of the various types of columns* in Q, as described in INDX. The fourth column type is any* column which has been deflated.** W (input/output) REAL array, dimension (K)* The first K elements of this array contain the components* of the deflation-adjusted updating vector. Destroyed on* output.** S (workspace) REAL array, dimension (N1 + 1)*K* Will contain the eigenvectors of the repaired matrix which* will be multiplied by the previously accumulated eigenvectors* to update the system.** LDS (input) INTEGER* The leading dimension of S. LDS >= max(1,K).** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: if INFO = 1, an eigenvalue did not converge** Further Details* ===============** Based on contributions by* Jeff Rutter, Computer Science Division, University of California* at Berkeley, USA* Modified by Francoise Tisseur, University of Tennessee.** =====================================================================** .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )* ..* .. Local Scalars .. INTEGER I, II, IQ2, J, N12, N2, N23 REAL TEMP* ..* .. External Functions .. REAL SLAMC3, SNRM2 EXTERNAL SLAMC3, SNRM2* ..* .. External Subroutines .. EXTERNAL SCOPY, SGEMM, SLACPY, SLAED4, SLASET, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC MAX, SIGN, SQRT* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( K.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.K ) THEN INFO = -2 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAED3', -INFO ) RETURN END IF** Quick return if possible* IF( K.EQ.0 ) $ RETURN** Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can* be computed with high relative accuracy (barring over/underflow).* This is a problem on machines without a guard digit in* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),* which on any of these machines zeros out the bottommost* bit of DLAMDA(I) if it is 1; this makes the subsequent* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation* occurs. On binary machines with a guard digit (almost all* machines) it does not change DLAMDA(I) at all. On hexadecimal* and decimal machines with a guard digit, it slightly* changes the bottommost bits of DLAMDA(I). It does not account* for hexadecimal or decimal machines without guard digits* (we know of none). We use a subroutine call to compute* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating* this code.* OPS = OPS + 2*N DO 10 I = 1, K DLAMDA( I ) = SLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I ) 10 CONTINUE* DO 20 J = 1, K CALL SLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )** If the zero finder fails, the computation is terminated.* IF( INFO.NE.0 ) $ GO TO 120 20 CONTINUE* IF( K.EQ.1 ) $ GO TO 110 IF( K.EQ.2 ) THEN DO 30 J = 1, K W( 1 ) = Q( 1, J ) W( 2 ) = Q( 2, J ) II = INDX( 1 ) Q( 1, J ) = W( II ) II = INDX( 2 ) Q( 2, J ) = W( II ) 30 CONTINUE GO TO 110 END IF** Compute updated W.* CALL SCOPY( K, W, 1, S, 1 )** Initialize W(I) = Q(I,I)* CALL SCOPY( K, Q, LDQ+1, W, 1 ) OPS = OPS + 3*K*( K-1 ) DO 60 J = 1, K DO 40 I = 1, J - 1 W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) ) 40 CONTINUE DO 50 I = J + 1, K W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) ) 50 CONTINUE 60 CONTINUE OPS = OPS + K DO 70 I = 1, K W( I ) = SIGN( SQRT( -W( I ) ), S( I ) ) 70 CONTINUE** Compute eigenvectors of the modified rank-1 modification.* OPS = OPS + 4*K*K DO 100 J = 1, K DO 80 I = 1, K S( I ) = W( I ) / Q( I, J ) 80 CONTINUE TEMP = SNRM2( K, S, 1 ) DO 90 I = 1, K II = INDX( I ) Q( I, J ) = S( II ) / TEMP 90 CONTINUE 100 CONTINUE** Compute the updated eigenvectors.* 110 CONTINUE* N2 = N - N1 N12 = CTOT( 1 ) + CTOT( 2 ) N23 = CTOT( 2 ) + CTOT( 3 )* CALL SLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 ) IQ2 = N1*N12 + 1 IF( N23.NE.0 ) THEN OPS = OPS + 2*REAL( N2 )*K*N23 CALL SGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23, $ ZERO, Q( N1+1, 1 ), LDQ ) ELSE CALL SLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ ) END IF* CALL SLACPY( 'A', N12, K, Q, LDQ, S, N12 ) IF( N12.NE.0 ) THEN OPS = OPS + 2*REAL( N1 )*K*N12 CALL SGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q, $ LDQ ) ELSE CALL SLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ ) END IF** 120 CONTINUE RETURN** End of SLAED3* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -