⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slaed3.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,     $                   CTOT, W, S, INFO )**  -- LAPACK routine (instrumented to count operations, version 3.0) --*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,*     Courant Institute, NAG Ltd., and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            INFO, K, LDQ, N, N1      REAL               RHO*     ..*     .. Array Arguments ..      INTEGER            CTOT( * ), INDX( * )      REAL               D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),     $                   S( * ), W( * )*     ..*     Common block to return operation count and iteration count*     ITCNT is unchanged, OPS is only incremented*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..**  Purpose*  =======**  SLAED3 finds the roots of the secular equation, as defined by the*  values in D, W, and RHO, between 1 and K.  It makes the*  appropriate calls to SLAED4 and then updates the eigenvectors by*  multiplying the matrix of eigenvectors of the pair of eigensystems*  being combined by the matrix of eigenvectors of the K-by-K system*  which is solved here.**  This code makes very mild assumptions about floating point*  arithmetic. It will work on machines with a guard digit in*  add/subtract, or on those binary machines without guard digits*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.*  It could conceivably fail on hexadecimal or decimal machines*  without guard digits, but we know of none.**  Arguments*  =========**  K       (input) INTEGER*          The number of terms in the rational function to be solved by*          SLAED4.  K >= 0.**  N       (input) INTEGER*          The number of rows and columns in the Q matrix.*          N >= K (deflation may result in N>K).**  N1      (input) INTEGER*          The location of the last eigenvalue in the leading submatrix.*          min(1,N) <= N1 <= N/2.**  D       (output) REAL array, dimension (N)*          D(I) contains the updated eigenvalues for*          1 <= I <= K.**  Q       (output) REAL array, dimension (LDQ,N)*          Initially the first K columns are used as workspace.*          On output the columns 1 to K contain*          the updated eigenvectors.**  LDQ     (input) INTEGER*          The leading dimension of the array Q.  LDQ >= max(1,N).**  RHO     (input) REAL*          The value of the parameter in the rank one update equation.*          RHO >= 0 required.**  DLAMDA  (input/output) REAL array, dimension (K)*          The first K elements of this array contain the old roots*          of the deflated updating problem.  These are the poles*          of the secular equation. May be changed on output by*          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,*          Cray-2, or Cray C-90, as described above.**  Q2      (input) REAL array, dimension (LDQ2, N)*          The first K columns of this matrix contain the non-deflated*          eigenvectors for the split problem.**  INDX    (input) INTEGER array, dimension (N)*          The permutation used to arrange the columns of the deflated*          Q matrix into three groups (see SLAED2).*          The rows of the eigenvectors found by SLAED4 must be likewise*          permuted before the matrix multiply can take place.**  CTOT    (input) INTEGER array, dimension (4)*          A count of the total number of the various types of columns*          in Q, as described in INDX.  The fourth column type is any*          column which has been deflated.**  W       (input/output) REAL array, dimension (K)*          The first K elements of this array contain the components*          of the deflation-adjusted updating vector. Destroyed on*          output.**  S       (workspace) REAL array, dimension (N1 + 1)*K*          Will contain the eigenvectors of the repaired matrix which*          will be multiplied by the previously accumulated eigenvectors*          to update the system.**  LDS     (input) INTEGER*          The leading dimension of S.  LDS >= max(1,K).**  INFO    (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  if INFO = 1, an eigenvalue did not converge**  Further Details*  ===============**  Based on contributions by*     Jeff Rutter, Computer Science Division, University of California*     at Berkeley, USA*  Modified by Francoise Tisseur, University of Tennessee.**  =====================================================================**     .. Parameters ..      REAL               ONE, ZERO      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0 )*     ..*     .. Local Scalars ..      INTEGER            I, II, IQ2, J, N12, N2, N23      REAL               TEMP*     ..*     .. External Functions ..      REAL               SLAMC3, SNRM2      EXTERNAL           SLAMC3, SNRM2*     ..*     .. External Subroutines ..      EXTERNAL           SCOPY, SGEMM, SLACPY, SLAED4, SLASET, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX, SIGN, SQRT*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( K.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.K ) THEN         INFO = -2      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN         INFO = -6      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'SLAED3', -INFO )         RETURN      END IF**     Quick return if possible*      IF( K.EQ.0 )     $   RETURN**     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can*     be computed with high relative accuracy (barring over/underflow).*     This is a problem on machines without a guard digit in*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),*     which on any of these machines zeros out the bottommost*     bit of DLAMDA(I) if it is 1; this makes the subsequent*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation*     occurs. On binary machines with a guard digit (almost all*     machines) it does not change DLAMDA(I) at all. On hexadecimal*     and decimal machines with a guard digit, it slightly*     changes the bottommost bits of DLAMDA(I). It does not account*     for hexadecimal or decimal machines without guard digits*     (we know of none). We use a subroutine call to compute*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating*     this code.*      OPS = OPS + 2*N      DO 10 I = 1, K         DLAMDA( I ) = SLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )   10 CONTINUE*      DO 20 J = 1, K         CALL SLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )**        If the zero finder fails, the computation is terminated.*         IF( INFO.NE.0 )     $      GO TO 120   20 CONTINUE*      IF( K.EQ.1 )     $   GO TO 110      IF( K.EQ.2 ) THEN         DO 30 J = 1, K            W( 1 ) = Q( 1, J )            W( 2 ) = Q( 2, J )            II = INDX( 1 )            Q( 1, J ) = W( II )            II = INDX( 2 )            Q( 2, J ) = W( II )   30    CONTINUE         GO TO 110      END IF**     Compute updated W.*      CALL SCOPY( K, W, 1, S, 1 )**     Initialize W(I) = Q(I,I)*      CALL SCOPY( K, Q, LDQ+1, W, 1 )      OPS = OPS + 3*K*( K-1 )      DO 60 J = 1, K         DO 40 I = 1, J - 1            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )   40    CONTINUE         DO 50 I = J + 1, K            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )   50    CONTINUE   60 CONTINUE      OPS = OPS + K      DO 70 I = 1, K         W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )   70 CONTINUE**     Compute eigenvectors of the modified rank-1 modification.*      OPS = OPS + 4*K*K      DO 100 J = 1, K         DO 80 I = 1, K            S( I ) = W( I ) / Q( I, J )   80    CONTINUE         TEMP = SNRM2( K, S, 1 )         DO 90 I = 1, K            II = INDX( I )            Q( I, J ) = S( II ) / TEMP   90    CONTINUE  100 CONTINUE**     Compute the updated eigenvectors.*  110 CONTINUE*      N2 = N - N1      N12 = CTOT( 1 ) + CTOT( 2 )      N23 = CTOT( 2 ) + CTOT( 3 )*      CALL SLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )      IQ2 = N1*N12 + 1      IF( N23.NE.0 ) THEN         OPS = OPS + 2*REAL( N2 )*K*N23         CALL SGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,     $               ZERO, Q( N1+1, 1 ), LDQ )      ELSE         CALL SLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )      END IF*      CALL SLACPY( 'A', N12, K, Q, LDQ, S, N12 )      IF( N12.NE.0 ) THEN         OPS = OPS + 2*REAL( N1 )*K*N12         CALL SGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,     $               LDQ )      ELSE         CALL SLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )      END IF**  120 CONTINUE      RETURN**     End of SLAED3*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -