⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cgelsx.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE CGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,     $                   WORK, RWORK, INFO )**  -- LAPACK driver routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     September 30, 1994**     .. Scalar Arguments ..      INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK      REAL               RCOND*     ..*     .. Array Arguments ..      INTEGER            JPVT( * )      REAL               RWORK( * )      COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )*     ..*     Common blocks to return operation counts and timings*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT      COMMON             / LSTIME / OPCNT, TIMNG*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..*     .. Arrays in Common ..      REAL               OPCNT( 6 ), TIMNG( 6 )*     ..**  Purpose*  =======**  CGELSX computes the minimum-norm solution to a complex linear least*  squares problem:*      minimize || A * X - B ||*  using a complete orthogonal factorization of A.  A is an M-by-N*  matrix which may be rank-deficient.**  Several right hand side vectors b and solution vectors x can be*  handled in a single call; they are stored as the columns of the*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution*  matrix X.**  The routine first computes a QR factorization with column pivoting:*      A * P = Q * [ R11 R12 ]*                  [  0  R22 ]*  with R11 defined as the largest leading submatrix whose estimated*  condition number is less than 1/RCOND.  The order of R11, RANK,*  is the effective rank of A.**  Then, R22 is considered to be negligible, and R12 is annihilated*  by unitary transformations from the right, arriving at the*  complete orthogonal factorization:*     A * P = Q * [ T11 0 ] * Z*                 [  0  0 ]*  The minimum-norm solution is then*     X = P * Z' [ inv(T11)*Q1'*B ]*                [        0       ]*  where Q1 consists of the first RANK columns of Q.**  Arguments*  =========**  M       (input) INTEGER*          The number of rows of the matrix A.  M >= 0.**  N       (input) INTEGER*          The number of columns of the matrix A.  N >= 0.**  NRHS    (input) INTEGER*          The number of right hand sides, i.e., the number of*          columns of matrices B and X. NRHS >= 0.**  A       (input/output) COMPLEX array, dimension (LDA,N)*          On entry, the M-by-N matrix A.*          On exit, A has been overwritten by details of its*          complete orthogonal factorization.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,M).**  B       (input/output) COMPLEX array, dimension (LDB,NRHS)*          On entry, the M-by-NRHS right hand side matrix B.*          On exit, the N-by-NRHS solution matrix X.*          If m >= n and RANK = n, the residual sum-of-squares for*          the solution in the i-th column is given by the sum of*          squares of elements N+1:M in that column.**  LDB     (input) INTEGER*          The leading dimension of the array B. LDB >= max(1,M,N).**  JPVT    (input/output) INTEGER array, dimension (N)*          On entry, if JPVT(i) .ne. 0, the i-th column of A is an*          initial column, otherwise it is a free column.  Before*          the QR factorization of A, all initial columns are*          permuted to the leading positions; only the remaining*          free columns are moved as a result of column pivoting*          during the factorization.*          On exit, if JPVT(i) = k, then the i-th column of A*P*          was the k-th column of A.**  RCOND   (input) REAL*          RCOND is used to determine the effective rank of A, which*          is defined as the order of the largest leading triangular*          submatrix R11 in the QR factorization with pivoting of A,*          whose estimated condition number < 1/RCOND.**  RANK    (output) INTEGER*          The effective rank of A, i.e., the order of the submatrix*          R11.  This is the same as the order of the submatrix T11*          in the complete orthogonal factorization of A.**  WORK    (workspace) COMPLEX array, dimension*                      (min(M,N) + max( N, 2*min(M,N)+NRHS )),**  RWORK   (workspace) REAL array, dimension (2*N)**  INFO    (output) INTEGER*          = 0:  successful exit*          < 0:  if INFO = -i, the i-th argument had an illegal value**  =====================================================================**     .. Parameters ..      INTEGER            IMAX, IMIN      PARAMETER          ( IMAX = 1, IMIN = 2 )      REAL               ZERO, ONE, DONE, NTDONE      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, DONE = ZERO,     $                   NTDONE = ONE )      COMPLEX            CZERO, CONE      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),     $                   CONE = ( 1.0E0, 0.0E0 ) )*     ..*     .. Local Scalars ..      INTEGER            GELSX, GEQPF, I, IASCL, IBSCL, ISMAX, ISMIN,     $                   J, K, LATZM, MN, TRSM, TZRQF, UNM2R      REAL               ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,     $                   SMLNUM, TIM1, TIM2      COMPLEX            C1, C2, S1, S2, T1, T2*     ..*     .. External Functions ..      REAL               CLANGE, SECOND, SLAMCH, SOPBL3,     $                   SOPLA      EXTERNAL           CLANGE, SECOND, SLAMCH, SOPBL3,     $                   SOPLA*     ..*     .. External Subroutines ..      EXTERNAL           CGEQPF, CLAIC1, CLASCL, CLASET,     $                   CLATZM, CTRSM, CTZRQF, CUNM2R,      $                   SLABAD, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          CONJG, REAL, ABS, MAX, MIN*     ..*     .. Data statements ..      DATA               GELSX / 1 /, GEQPF / 2 /, LATZM / 6 /,     $                   UNM2R / 4 /, TRSM / 5 /, TZRQF / 3 /*     ..*     .. Executable Statements ..*      MN = MIN( M, N )      ISMIN = MN + 1      ISMAX = 2*MN + 1**     Test the input arguments.*      INFO = 0      IF( M.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( NRHS.LT.0 ) THEN         INFO = -3      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -5      ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN         INFO = -7      END IF*      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'CGELSX', -INFO )         RETURN      END IF**     Quick return if possible*      IF( MIN( M, N, NRHS ).EQ.0 ) THEN         RANK = 0         RETURN      END IF**     Get machine parameters*      OPCNT( GELSX ) = OPCNT( GELSX ) + REAL( 2 )      SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )      BIGNUM = ONE / SMLNUM      CALL SLABAD( SMLNUM, BIGNUM )**     Scale A, B if max elements outside range [SMLNUM,BIGNUM]*      ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )      IASCL = 0      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN**        Scale matrix norm up to SMLNUM*         OPCNT( GELSX ) = OPCNT( GELSX ) + REAL( 6*M*N )         CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )         IASCL = 1      ELSE IF( ANRM.GT.BIGNUM ) THEN**        Scale matrix norm down to BIGNUM*         OPCNT( GELSX ) = OPCNT( GELSX ) + REAL( 6*M*N )         CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )         IASCL = 2      ELSE IF( ANRM.EQ.ZERO ) THEN**        Matrix all zero. Return zero solution.*         CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )         RANK = 0         GO TO 100      END IF*      BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )      IBSCL = 0      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN**        Scale matrix norm up to SMLNUM*         OPCNT( GELSX ) = OPCNT( GELSX ) + REAL( 6*M*NRHS )         CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )         IBSCL = 1      ELSE IF( BNRM.GT.BIGNUM ) THEN**        Scale matrix norm down to BIGNUM*         OPCNT( GELSX ) = OPCNT( GELSX ) + REAL( 6*M*NRHS )         CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )         IBSCL = 2      END IF**     Compute QR factorization with column pivoting of A:*        A * P = Q * R*      OPCNT( GEQPF ) = OPCNT( GEQPF ) +     $                 SOPLA( 'CGEQPF', M, N, 0, 0, 0 )      TIM1 = SECOND( )      CALL CGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), RWORK,     $             INFO )      TIM2 = SECOND( )      TIMNG( GEQPF ) = TIMNG( GEQPF ) + ( TIM2-TIM1 )**     complex workspace MN+N. Real workspace 2*N. Details of Householder*     rotations stored in WORK(1:MN).**     Determine RANK using incremental condition estimation*      WORK( ISMIN ) = CONE      WORK( ISMAX ) = CONE      SMAX = ABS( A( 1, 1 ) )      SMIN = SMAX      IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN         RANK = 0         CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )         GO TO 100      ELSE         RANK = 1      END IF*   10 CONTINUE      IF( RANK.LT.MN ) THEN         I = RANK + 1         OPS = 0         CALL CLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),     $                A( I, I ), SMINPR, S1, C1 )         CALL CLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),     $                A( I, I ), SMAXPR, S2, C2 )         OPCNT( GELSX ) = OPCNT( GELSX ) + OPS + REAL( 1 )*         IF( SMAXPR*RCOND.LE.SMINPR ) THEN            OPCNT( GELSX ) = OPCNT( GELSX ) + REAL( RANK*6 )            DO 20 I = 1, RANK               WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )               WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )   20       CONTINUE            WORK( ISMIN+RANK ) = C1            WORK( ISMAX+RANK ) = C2            SMIN = SMINPR            SMAX = SMAXPR            RANK = RANK + 1            GO TO 10         END IF      END IF**     Logically partition R = [ R11 R12 ]*                             [  0  R22 ]*     where R11 = R(1:RANK,1:RANK)**     [R11,R12] = [ T11, 0 ] * Y*      IF( RANK.LT.N ) THEN         OPCNT( TZRQF ) = OPCNT( TZRQF ) +     $                    SOPLA( 'CTZRQF', RANK, N, 0, 0, 0 )         TIM1 = SECOND( )         CALL CTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )         TIM2 = SECOND( )         TIMNG( TZRQF ) = TIMNG( TZRQF ) + ( TIM2-TIM1 )      END IF**     Details of Householder rotations stored in WORK(MN+1:2*MN)**     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)*      OPCNT( UNM2R ) = OPCNT( UNM2R ) +     $                 SOPLA( 'CUNMQR', M, NRHS, MN, 0, 0 )       TIM1 = SECOND( )      CALL CUNM2R( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,     $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), INFO )      TIM2 = SECOND( )      TIMNG( UNM2R ) = TIMNG( UNM2R ) + ( TIM2-TIM1 )**     workspace NRHS**     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)*      OPCNT( TRSM ) = OPCNT( TRSM ) +     $                SOPBL3( 'CTRSM ', RANK, NRHS, 0 )      TIM1 = SECOND( )      CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,     $            NRHS, CONE, A, LDA, B, LDB )      TIM2 = SECOND( )      TIMNG( TRSM ) = TIMNG( TRSM ) + ( TIM2-TIM1 )*      DO 40 I = RANK + 1, N         DO 30 J = 1, NRHS            B( I, J ) = CZERO   30    CONTINUE   40 CONTINUE**     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)*      IF( RANK.LT.N ) THEN         OPCNT( LATZM ) = OPCNT( LATZM ) +     $   REAL( 8*( (N-RANK)*NRHS + NRHS + (N-RANK)*NRHS )*RANK )         TIM1 = SECOND( )         DO 50 I = 1, RANK            CALL CLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,     $                   CONJG( WORK( MN+I ) ), B( I, 1 ),     $                   B( RANK+1, 1 ), LDB, WORK( 2*MN+1 ) )   50    CONTINUE         TIM2 = SECOND( )         TIMNG( LATZM ) = TIMNG( LATZM ) + ( TIM2-TIM1 )      END IF**     workspace NRHS**     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)*      DO 90 J = 1, NRHS         DO 60 I = 1, N            WORK( 2*MN+I ) = NTDONE   60    CONTINUE         DO 80 I = 1, N            IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN               IF( JPVT( I ).NE.I ) THEN                  K = I                  T1 = B( K, J )                  T2 = B( JPVT( K ), J )   70             CONTINUE                  B( JPVT( K ), J ) = T1                  WORK( 2*MN+K ) = DONE                  T1 = T2                  K = JPVT( K )                  T2 = B( JPVT( K ), J )                  IF( JPVT( K ).NE.I )     $               GO TO 70                  B( I, J ) = T1                  WORK( 2*MN+K ) = DONE               END IF            END IF   80    CONTINUE   90 CONTINUE**     Undo scaling*      IF( IASCL.EQ.1 ) THEN         OPCNT( GELSX ) = OPCNT( GELSX ) +     $                    REAL( 6*( N*NRHS + RANK*RANK ) )         CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )         CALL CLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,     $                INFO )      ELSE IF( IASCL.EQ.2 ) THEN         OPCNT( GELSX ) = OPCNT( GELSX ) +     $                    REAL( 6*( N*NRHS + RANK*RANK ) )         CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )         CALL CLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,     $                INFO )      END IF      IF( IBSCL.EQ.1 ) THEN         OPCNT( GELSX ) = OPCNT( GELSX ) + REAL( 6*N*NRHS )         CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )      ELSE IF( IBSCL.EQ.2 ) THEN         OPCNT( GELSX ) = OPCNT( GELSX ) + REAL( 6*N*NRHS )         CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )      END IF*  100 CONTINUE*      RETURN**     End of CGELSX*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -