⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sgelss.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE SGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,     $                   WORK, LWORK, INFO )**  -- LAPACK driver routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999**     .. Scalar Arguments ..      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK      REAL               RCOND*     ..*     .. Array Arguments ..      REAL               A( LDA, * ), B( LDB, * ), S( * ), WORK( * )*     ..*     Common blocks to return operation counts and timings*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT      COMMON             / LSTIME / OPCNT, TIMNG*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..*     .. Arrays in Common ..      REAL               OPCNT( 6 ), TIMNG( 6 )*     ..**  Purpose*  =======**  SGELSS computes the minimum norm solution to a real linear least*  squares problem:**  Minimize 2-norm(| b - A*x |).**  using the singular value decomposition (SVD) of A. A is an M-by-N*  matrix which may be rank-deficient.**  Several right hand side vectors b and solution vectors x can be*  handled in a single call; they are stored as the columns of the*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix*  X.**  The effective rank of A is determined by treating as zero those*  singular values which are less than RCOND times the largest singular*  value.**  Arguments*  =========**  M       (input) INTEGER*          The number of rows of the matrix A. M >= 0.**  N       (input) INTEGER*          The number of columns of the matrix A. N >= 0.**  NRHS    (input) INTEGER*          The number of right hand sides, i.e., the number of columns*          of the matrices B and X. NRHS >= 0.**  A       (input/output) REAL array, dimension (LDA,N)*          On entry, the M-by-N matrix A.*          On exit, the first min(m,n) rows of A are overwritten with*          its right singular vectors, stored rowwise.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,M).**  B       (input/output) REAL array, dimension (LDB,NRHS)*          On entry, the M-by-NRHS right hand side matrix B.*          On exit, B is overwritten by the N-by-NRHS solution*          matrix X.  If m >= n and RANK = n, the residual*          sum-of-squares for the solution in the i-th column is given*          by the sum of squares of elements n+1:m in that column.**  LDB     (input) INTEGER*          The leading dimension of the array B. LDB >= max(1,max(M,N)).**  S       (output) REAL array, dimension (min(M,N))*          The singular values of A in decreasing order.*          The condition number of A in the 2-norm = S(1)/S(min(m,n)).**  RCOND   (input) REAL*          RCOND is used to determine the effective rank of A.*          Singular values S(i) <= RCOND*S(1) are treated as zero.*          If RCOND < 0, machine precision is used instead.**  RANK    (output) INTEGER*          The effective rank of A, i.e., the number of singular values*          which are greater than RCOND*S(1).**  WORK    (workspace/output) REAL array, dimension (LWORK)*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.**  LWORK   (input) INTEGER*          The dimension of the array WORK. LWORK >= 1, and also:*          LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )*          For good performance, LWORK should generally be larger.**          If LWORK = -1, then a workspace query is assumed; the routine*          only calculates the optimal size of the WORK array, returns*          this value as the first entry of the WORK array, and no error*          message related to LWORK is issued by XERBLA.**  INFO    (output) INTEGER*          = 0:  successful exit*          < 0:  if INFO = -i, the i-th argument had an illegal value.*          > 0:  the algorithm for computing the SVD failed to converge;*                if INFO = i, i off-diagonal elements of an intermediate*                bidiagonal form did not converge to zero.**  =====================================================================**     .. Parameters ..      REAL               ZERO, ONE      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )*     ..*     .. Local Scalars ..      LOGICAL            LQUERY      INTEGER            BDSPAC, BDSQR, BL, CHUNK, GEBRD, GELQF, GELSS,     $                   GEMM, GEMV, GEQRF, I, IASCL, IBSCL, IE, IL,     $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,     $                   MAXWRK, MINMN, MINWRK, MM, MNTHR, NB,     $                   ORGBR, ORMBR, ORMLQ, ORMQR      REAL               ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR,     $                   T1, T2*     ..*     .. Local Arrays ..      REAL               VDUM( 1 )*     ..*     .. External Subroutines ..      EXTERNAL           SBDSQR, SCOPY, SGEBRD, SGELQF, SGEMM, SGEMV,     $                   SGEQRF, SLABAD, SLACPY, SLASCL, SLASET, SORGBR,     $                   SORMBR, SORMLQ, SORMQR, SRSCL, XERBLA*     ..*     .. External Functions ..      INTEGER            ILAENV      REAL               SECOND, SLAMCH, SLANGE, SOPBL2,     $                   SOPBL3, SOPLA, SOPLA2      EXTERNAL           SECOND, SLAMCH, SLANGE, SOPBL2,     $                   SOPBL3, SOPLA, SOPLA2, ILAENV*     ..*     .. Intrinsic Functions ..      INTRINSIC          REAL, MAX, MIN*     ..*     .. Data statements ..      DATA               BDSQR / 5 /, GEBRD / 3 /, GELQF / 2 /,     $                   GELSS / 1 /, GEMM  / 6 /, GEMV  / 6 /,     $                   GEQRF / 2 /, ORGBR / 4 /, ORMBR / 4 /,     $                   ORMLQ / 6 /, ORMQR / 2 /*     ..*     .. Executable Statements ..**     Test the input arguments*      INFO = 0      MINMN = MIN( M, N )      MAXMN = MAX( M, N )      MNTHR = ILAENV( 6, 'SGELSS', ' ', M, N, NRHS, -1 )      LQUERY = ( LWORK.EQ.-1 )      IF( M.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( NRHS.LT.0 ) THEN         INFO = -3      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -5      ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN         INFO = -7      END IF**     Compute workspace*      (Note: Comments in the code beginning "Workspace:" describe the*       minimal amount of workspace needed at that point in the code,*       as well as the preferred amount for good performance.*       NB refers to the optimal block size for the immediately*       following subroutine, as returned by ILAENV.)*      MINWRK = 1      IF( INFO.EQ.0 .AND. ( LWORK.GE.1 .OR. LQUERY ) ) THEN         MAXWRK = 0         MM = M         IF( M.GE.N .AND. M.GE.MNTHR ) THEN**           Path 1a - overdetermined, with many more rows than columns*            MM = N            MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'SGEQRF', ' ', M, N,     $               -1, -1 ) )            MAXWRK = MAX( MAXWRK, N+NRHS*     $               ILAENV( 1, 'SORMQR', 'LT', M, NRHS, N, -1 ) )         END IF         IF( M.GE.N ) THEN**           Path 1 - overdetermined or exactly determined**           Compute workspace needed for SBDSQR*            BDSPAC = MAX( 1, 5*N )            MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*     $               ILAENV( 1, 'SGEBRD', ' ', MM, N, -1, -1 ) )            MAXWRK = MAX( MAXWRK, 3*N+NRHS*     $               ILAENV( 1, 'SORMBR', 'QLT', MM, NRHS, N, -1 ) )            MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*     $               ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )            MAXWRK = MAX( MAXWRK, BDSPAC )            MAXWRK = MAX( MAXWRK, N*NRHS )            MINWRK = MAX( 3*N+MM, 3*N+NRHS, BDSPAC )            MAXWRK = MAX( MINWRK, MAXWRK )         END IF         IF( N.GT.M ) THEN**           Compute workspace needed for SBDSQR*            BDSPAC = MAX( 1, 5*M )            MINWRK = MAX( 3*M+NRHS, 3*M+N, BDSPAC )            IF( N.GE.MNTHR ) THEN**              Path 2a - underdetermined, with many more columns*              than rows*               MAXWRK = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )               MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*     $                  ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )               MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*     $                  ILAENV( 1, 'SORMBR', 'QLT', M, NRHS, M, -1 ) )               MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*     $                  ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )               MAXWRK = MAX( MAXWRK, M*M+M+BDSPAC )               IF( NRHS.GT.1 ) THEN                  MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )               ELSE                  MAXWRK = MAX( MAXWRK, M*M+2*M )               END IF               MAXWRK = MAX( MAXWRK, M+NRHS*     $                  ILAENV( 1, 'SORMLQ', 'LT', N, NRHS, M, -1 ) )            ELSE**              Path 2 - underdetermined*               MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'SGEBRD', ' ', M, N,     $                  -1, -1 )               MAXWRK = MAX( MAXWRK, 3*M+NRHS*     $                  ILAENV( 1, 'SORMBR', 'QLT', M, NRHS, M, -1 ) )               MAXWRK = MAX( MAXWRK, 3*M+M*     $                  ILAENV( 1, 'SORGBR', 'P', M, N, M, -1 ) )               MAXWRK = MAX( MAXWRK, BDSPAC )               MAXWRK = MAX( MAXWRK, N*NRHS )            END IF         END IF         MAXWRK = MAX( MINWRK, MAXWRK )         WORK( 1 ) = MAXWRK      END IF*      MINWRK = MAX( MINWRK, 1 )      IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )     $   INFO = -12      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'SGELSS', -INFO )         RETURN      ELSE IF( LQUERY ) THEN         RETURN      END IF**     Quick return if possible*      IF( M.EQ.0 .OR. N.EQ.0 ) THEN         RANK = 0         RETURN      END IF**     Get machine parameters*      EPS = SLAMCH( 'P' )      SFMIN = SLAMCH( 'S' )      OPCNT( GELSS ) = OPCNT( GELSS ) + REAL( 2 )      SMLNUM = SFMIN / EPS      BIGNUM = ONE / SMLNUM      CALL SLABAD( SMLNUM, BIGNUM )**     Scale A if max element outside range [SMLNUM,BIGNUM]*      ANRM = SLANGE( 'M', M, N, A, LDA, WORK )      IASCL = 0      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN**        Scale matrix norm up to SMLNUM*         OPCNT( GELSS ) = OPCNT( GELSS ) + REAL( M*N )         CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )         IASCL = 1      ELSE IF( ANRM.GT.BIGNUM ) THEN**        Scale matrix norm down to BIGNUM*         OPCNT( GELSS ) = OPCNT( GELSS ) + REAL( M*N )         CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )         IASCL = 2      ELSE IF( ANRM.EQ.ZERO ) THEN**        Matrix all zero. Return zero solution.*         CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )         CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )         RANK = 0         GO TO 70      END IF**     Scale B if max element outside range [SMLNUM,BIGNUM]*      BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK )      IBSCL = 0      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN**        Scale matrix norm up to SMLNUM*         OPCNT( GELSS ) = OPCNT( GELSS ) + REAL( M*NRHS )         CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )         IBSCL = 1      ELSE IF( BNRM.GT.BIGNUM ) THEN**        Scale matrix norm down to BIGNUM*         OPCNT( GELSS ) = OPCNT( GELSS ) + REAL( M*NRHS )         CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )         IBSCL = 2      END IF**     Overdetermined case*      IF( M.GE.N ) THEN**        Path 1 - overdetermined or exactly determined*         MM = M         IF( M.GE.MNTHR ) THEN**           Path 1a - overdetermined, with many more rows than columns*            MM = N            ITAU = 1            IWORK = ITAU + N**           Compute A=Q*R*           (Workspace: need 2*N, prefer N+N*NB)*            NB = ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )            OPCNT( GEQRF ) = OPCNT( GEQRF ) +     $                       SOPLA( 'SGEQRF', M, N, 0, 0, NB )            T1 = SECOND( )            CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),     $                   LWORK-IWORK+1, INFO )            T2 = SECOND( )            TIMNG( GEQRF ) = TIMNG( GEQRF ) + ( T2-T1 )**           Multiply B by transpose(Q)*           (Workspace: need N+NRHS, prefer N+NRHS*NB)*            NB = ILAENV( 1, 'SORMQR', 'LT', M, NRHS, N, -1 )            OPCNT( ORMQR ) = OPCNT( ORMQR ) +     $                       SOPLA( 'SORMQR', M, NRHS, N, 0, NB )            T1 = SECOND( )            CALL SORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,     $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )            T2 = SECOND( )            TIMNG( ORMQR ) = TIMNG( ORMQR ) + ( T2-T1 )**           Zero out below R*            IF( N.GT.1 )     $         CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )         END IF*         IE = 1         ITAUQ = IE + N         ITAUP = ITAUQ + N         IWORK = ITAUP + N**        Bidiagonalize R in A*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)*         NB = ILAENV( 1, 'SGEBRD', ' ', MM, N, -1, -1 )         OPCNT( GEBRD ) = OPCNT( GEBRD ) +     $                    SOPLA( 'SGEBRD', MM, N, 0, 0, NB )         T1 = SECOND( )         CALL SGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),     $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,     $                INFO )         T2 = SECOND( )         TIMNG( GEBRD ) = TIMNG( GEBRD ) + ( T2-T1 )**        Multiply B by transpose of left bidiagonalizing vectors of R*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)*         NB = ILAENV( 1, 'SORMBR', 'QLT', MM, NRHS, N, -1 )         OPCNT( ORMBR ) = OPCNT( ORMBR ) +     $                    SOPLA2( 'SORMBR', 'QLT', MM, NRHS, N, 0, NB )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -