⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlals0.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,     $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,     $                   POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )**  -- LAPACK routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     December 22, 1999**     .. Scalar Arguments ..      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,     $                   LDGNUM, NL, NR, NRHS, SQRE      DOUBLE PRECISION   C, S*     ..*     .. Array Arguments ..      INTEGER            GIVCOL( LDGCOL, * ), PERM( * )      DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), DIFL( * ),     $                   DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ),     $                   POLES( LDGNUM, * ), WORK( * ), Z( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  DLALS0 applies back the multiplying factors of either the left or the*  right singular vector matrix of a diagonal matrix appended by a row*  to the right hand side matrix B in solving the least squares problem*  using the divide-and-conquer SVD approach.**  For the left singular vector matrix, three types of orthogonal*  matrices are involved:**  (1L) Givens rotations: the number of such rotations is GIVPTR; the*       pairs of columns/rows they were applied to are stored in GIVCOL;*       and the C- and S-values of these rotations are stored in GIVNUM.**  (2L) Permutation. The (NL+1)-st row of B is to be moved to the first*       row, and for J=2:N, PERM(J)-th row of B is to be moved to the*       J-th row.**  (3L) The left singular vector matrix of the remaining matrix.**  For the right singular vector matrix, four types of orthogonal*  matrices are involved:**  (1R) The right singular vector matrix of the remaining matrix.**  (2R) If SQRE = 1, one extra Givens rotation to generate the right*       null space.**  (3R) The inverse transformation of (2L).**  (4R) The inverse transformation of (1L).**  Arguments*  =========**  ICOMPQ (input) INTEGER*         Specifies whether singular vectors are to be computed in*         factored form:*         = 0: Left singular vector matrix.*         = 1: Right singular vector matrix.**  NL     (input) INTEGER*         The row dimension of the upper block. NL >= 1.**  NR     (input) INTEGER*         The row dimension of the lower block. NR >= 1.**  SQRE   (input) INTEGER*         = 0: the lower block is an NR-by-NR square matrix.*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.**         The bidiagonal matrix has row dimension N = NL + NR + 1,*         and column dimension M = N + SQRE.**  NRHS   (input) INTEGER*         The number of columns of B and BX. NRHS must be at least 1.**  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )*         On input, B contains the right hand sides of the least*         squares problem in rows 1 through M. On output, B contains*         the solution X in rows 1 through N.**  LDB    (input) INTEGER*         The leading dimension of B. LDB must be at least*         max(1,MAX( M, N ) ).**  BX     (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS )**  LDBX   (input) INTEGER*         The leading dimension of BX.**  PERM   (input) INTEGER array, dimension ( N )*         The permutations (from deflation and sorting) applied*         to the two blocks.**  GIVPTR (input) INTEGER*         The number of Givens rotations which took place in this*         subproblem.**  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )*         Each pair of numbers indicates a pair of rows/columns*         involved in a Givens rotation.**  LDGCOL (input) INTEGER*         The leading dimension of GIVCOL, must be at least N.**  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )*         Each number indicates the C or S value used in the*         corresponding Givens rotation.**  LDGNUM (input) INTEGER*         The leading dimension of arrays DIFR, POLES and*         GIVNUM, must be at least K.**  POLES  (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )*         On entry, POLES(1:K, 1) contains the new singular*         values obtained from solving the secular equation, and*         POLES(1:K, 2) is an array containing the poles in the secular*         equation.**  DIFL   (input) DOUBLE PRECISION array, dimension ( K ).*         On entry, DIFL(I) is the distance between I-th updated*         (undeflated) singular value and the I-th (undeflated) old*         singular value.**  DIFR   (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).*         On entry, DIFR(I, 1) contains the distances between I-th*         updated (undeflated) singular value and the I+1-th*         (undeflated) old singular value. And DIFR(I, 2) is the*         normalizing factor for the I-th right singular vector.**  Z      (input) DOUBLE PRECISION array, dimension ( K )*         Contain the components of the deflation-adjusted updating row*         vector.**  K      (input) INTEGER*         Contains the dimension of the non-deflated matrix,*         This is the order of the related secular equation. 1 <= K <=N.**  C      (input) DOUBLE PRECISION*         C contains garbage if SQRE =0 and the C-value of a Givens*         rotation related to the right null space if SQRE = 1.**  S      (input) DOUBLE PRECISION*         S contains garbage if SQRE =0 and the S-value of a Givens*         rotation related to the right null space if SQRE = 1.**  WORK   (workspace) DOUBLE PRECISION array, dimension ( K )**  INFO   (output) INTEGER*          = 0:  successful exit.*          < 0:  if INFO = -i, the i-th argument had an illegal value.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE, ZERO, NEGONE      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 )*     ..*     .. Local Scalars ..      INTEGER            I, J, M, N, NLP1      DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP*     ..*     .. External Subroutines ..      EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DROT, DSCAL,     $                   XERBLA*     ..*     .. External Functions ..      DOUBLE PRECISION   DLAMC3, DNRM2, DOPBL2      EXTERNAL           DLAMC3, DNRM2, DOPBL2*     ..*     .. Intrinsic Functions ..      INTRINSIC          DBLE *     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN         INFO = -1      ELSE IF( NL.LT.1 ) THEN         INFO = -2      ELSE IF( NR.LT.1 ) THEN         INFO = -3      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN         INFO = -4      END IF*      N = NL + NR + 1*      IF( NRHS.LT.1 ) THEN         INFO = -5      ELSE IF( LDB.LT.N ) THEN         INFO = -7      ELSE IF( LDBX.LT.N ) THEN         INFO = -9      ELSE IF( GIVPTR.LT.0 ) THEN         INFO = -11      ELSE IF( LDGCOL.LT.N ) THEN         INFO = -13      ELSE IF( LDGNUM.LT.N ) THEN         INFO = -15      ELSE IF( K.LT.1 ) THEN         INFO = -20      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DLALS0', -INFO )         RETURN      END IF*      M = N + SQRE      NLP1 = NL + 1*      IF( ICOMPQ.EQ.0 ) THEN**        Apply back orthogonal transformations from the left.**        Step (1L): apply back the Givens rotations performed.*         OPS = OPS + DBLE( 6*NRHS*GIVPTR )         DO 10 I = 1, GIVPTR            CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,     $                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),     $                 GIVNUM( I, 1 ) )   10    CONTINUE**        Step (2L): permute rows of B.*         CALL DCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )         DO 20 I = 2, N            CALL DCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )   20    CONTINUE**        Step (3L): apply the inverse of the left singular vector*        matrix to BX.*         IF( K.EQ.1 ) THEN            CALL DCOPY( NRHS, BX, LDBX, B, LDB )            IF( Z( 1 ).LT.ZERO ) THEN               OPS = OPS + DBLE( NRHS )               CALL DSCAL( NRHS, NEGONE, B, LDB )            END IF         ELSE            DO 50 J = 1, K               DIFLJ = DIFL( J )               DJ = POLES( J, 1 )               DSIGJ = -POLES( J, 2 )               IF( J.LT.K ) THEN                  DIFRJ = -DIFR( J, 1 )                  DSIGJP = -POLES( J+1, 2 )               END IF               IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )     $              THEN                  WORK( J ) = ZERO               ELSE                  OPS = OPS + DBLE( 4 )                  WORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /     $                        ( POLES( J, 2 )+DJ )               END IF               DO 30 I = 1, J - 1                  IF( ( Z( I ).EQ.ZERO ) .OR.     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN                     WORK( I ) = ZERO                  ELSE                     OPS = OPS + DBLE( 6 )                     WORK( I ) = POLES( I, 2 )*Z( I ) /     $                           ( DLAMC3( POLES( I, 2 ), DSIGJ )-     $                           DIFLJ ) / ( POLES( I, 2 )+DJ )                  END IF   30          CONTINUE               DO 40 I = J + 1, K                  IF( ( Z( I ).EQ.ZERO ) .OR.     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN                     WORK( I ) = ZERO                  ELSE                     OPS = OPS + DBLE( 6 )                     WORK( I ) = POLES( I, 2 )*Z( I ) /     $                           ( DLAMC3( POLES( I, 2 ), DSIGJP )+     $                           DIFRJ ) / ( POLES( I, 2 )+DJ )                  END IF   40          CONTINUE               WORK( 1 ) = NEGONE               OPS = OPS + 2*K + NRHS +     $               DOPBL2( 'DGEMV ', K, NRHS, 0, 0 )               TEMP = DNRM2( K, WORK, 1 )               CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,     $                     B( J, 1 ), LDB )               CALL DLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),     $                      LDB, INFO )   50       CONTINUE         END IF**        Move the deflated rows of BX to B also.*         IF( K.LT.MAX( M, N ) )     $      CALL DLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,     $                   B( K+1, 1 ), LDB )      ELSE**        Apply back the right orthogonal transformations.**        Step (1R): apply back the new right singular vector matrix*        to B.*         IF( K.EQ.1 ) THEN            CALL DCOPY( NRHS, B, LDB, BX, LDBX )         ELSE            DO 80 J = 1, K               DSIGJ = POLES( J, 2 )               IF( Z( J ).EQ.ZERO ) THEN                  WORK( J ) = ZERO               ELSE                  OPS = OPS + DBLE( 4 )                  WORK( J ) = -Z( J ) / DIFL( J ) /     $                        ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )               END IF               DO 60 I = 1, J - 1                  IF( Z( J ).EQ.ZERO ) THEN                     WORK( I ) = ZERO                  ELSE                     OPS = OPS + DBLE( 6 )                     WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1,     $                           2 ) )-DIFR( I, 1 ) ) /     $                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )                  END IF   60          CONTINUE               DO 70 I = J + 1, K                  IF( Z( J ).EQ.ZERO ) THEN                     WORK( I ) = ZERO                  ELSE                     OPS = OPS + DBLE( 6 )                     WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I,     $                           2 ) )-DIFL( I ) ) /     $                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )                  END IF   70          CONTINUE               OPS = OPS + DOPBL2( 'DGEMV ', K, NRHS, 0, 0 )                CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,     $                     BX( J, 1 ), LDBX )   80       CONTINUE         END IF**        Step (2R): if SQRE = 1, apply back the rotation that is*        related to the right null space of the subproblem.*         IF( SQRE.EQ.1 ) THEN            OPS = OPS + DBLE( 6*NRHS )            CALL DCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )            CALL DROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )         END IF         IF( K.LT.MAX( M, N ) )     $      CALL DLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB,     $                   BX( K+1, 1 ), LDBX )**        Step (3R): permute rows of B.*         CALL DCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )         IF( SQRE.EQ.1 ) THEN            CALL DCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )         END IF         DO 90 I = 2, N            CALL DCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )   90    CONTINUE**        Step (4R): apply back the Givens rotations performed.*         OPS = OPS + DBLE( 6*NRHS*GIVPTR )         DO 100 I = GIVPTR, 1, -1            CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,     $                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),     $                 -GIVNUM( I, 1 ) )  100    CONTINUE      END IF*      RETURN**     End of DLALS0*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -