📄 dgels.f
字号:
SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, $ INFO )** -- LAPACK driver routine (instrumented to count ops, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* June 30, 1999** .. Scalar Arguments .. CHARACTER TRANS INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS* ..* .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )* ..* Common block to return operation count.* .. Common blocks .. COMMON / LSTIME / OPCNT, TIMNG* ..* .. Arrays in Common .. DOUBLE PRECISION OPCNT( 6 ), TIMNG( 6 )* ..** Purpose* =======** DGELS solves overdetermined or underdetermined real linear systems* involving an M-by-N matrix A, or its transpose, using a QR or LQ* factorization of A. It is assumed that A has full rank.** The following options are provided:** 1. If TRANS = 'N' and m >= n: find the least squares solution of* an overdetermined system, i.e., solve the least squares problem* minimize || B - A*X ||.** 2. If TRANS = 'N' and m < n: find the minimum norm solution of* an underdetermined system A * X = B.** 3. If TRANS = 'T' and m >= n: find the minimum norm solution of* an undetermined system A**T * X = B.** 4. If TRANS = 'T' and m < n: find the least squares solution of* an overdetermined system, i.e., solve the least squares problem* minimize || B - A**T * X ||.** Several right hand side vectors b and solution vectors x can be* handled in a single call; they are stored as the columns of the* M-by-NRHS right hand side matrix B and the N-by-NRHS solution* matrix X.** Arguments* =========** TRANS (input) CHARACTER* = 'N': the linear system involves A;* = 'T': the linear system involves A**T.** M (input) INTEGER* The number of rows of the matrix A. M >= 0.** N (input) INTEGER* The number of columns of the matrix A. N >= 0.** NRHS (input) INTEGER* The number of right hand sides, i.e., the number of* columns of the matrices B and X. NRHS >=0.** A (input/output) DOUBLE PRECISION array, dimension (LDA,N)* On entry, the M-by-N matrix A.* On exit,* if M >= N, A is overwritten by details of its QR* factorization as returned by DGEQRF;* if M < N, A is overwritten by details of its LQ* factorization as returned by DGELQF.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,M).** B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)* On entry, the matrix B of right hand side vectors, stored* columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS* if TRANS = 'T'.* On exit, B is overwritten by the solution vectors, stored* columnwise:* if TRANS = 'N' and m >= n, rows 1 to n of B contain the least* squares solution vectors; the residual sum of squares for the* solution in each column is given by the sum of squares of* elements N+1 to M in that column;* if TRANS = 'N' and m < n, rows 1 to N of B contain the* minimum norm solution vectors;* if TRANS = 'T' and m >= n, rows 1 to M of B contain the* minimum norm solution vectors;* if TRANS = 'T' and m < n, rows 1 to M of B contain the* least squares solution vectors; the residual sum of squares* for the solution in each column is given by the sum of* squares of elements M+1 to N in that column.** LDB (input) INTEGER* The leading dimension of the array B. LDB >= MAX(1,M,N).** WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.** LWORK (input) INTEGER* The dimension of the array WORK.* LWORK >= max( 1, MN + max( MN, NRHS ) ).* For optimal performance,* LWORK >= max( 1, MN + max( MN, NRHS )*NB ).* where MN = min(M,N) and NB is the optimum block size.** If LWORK = -1, then a workspace query is assumed; the routine* only calculates the optimal size of the WORK array, returns* this value as the first entry of the WORK array, and no error* message related to LWORK is issued by XERBLA.** INFO (output) INTEGER* = 0: successful exit* < 0: if INFO = -i, the i-th argument had an illegal value** =====================================================================** .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )* ..* .. Local Scalars .. LOGICAL LQUERY, TPSD INTEGER BROW, GELQF, GELS, GEQRF, I, IASCL, IBSCL, J, $ MN, NB, ORMLQ, ORMQR, SCLLEN, TRSM, WSIZE DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM, T1, T2* ..* .. Local Arrays .. DOUBLE PRECISION RWORK( 1 )* ..* .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, DLANGE, DOPBL3, DOPLA, DSECND EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE, DOPBL3, DOPLA, $ DSECND* ..* .. External Subroutines .. EXTERNAL DGELQF, DGEQRF, DLABAD, DLASCL, DLASET, DORMLQ, $ DORMQR, DTRSM, XERBLA* ..* .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN* ..* .. Data statements .. DATA GELQF / 2 / , GELS / 1 / , GEQRF / 2 / , $ ORMLQ / 3 / , ORMQR / 3 / , TRSM / 4 /* ..* .. Executable Statements ..** Test the input arguments.* INFO = 0 MN = MIN( M, N ) LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NRHS.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN INFO = -8 ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY ) $ THEN INFO = -10 END IF** Figure out optimal block size* IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN* TPSD = .TRUE. IF( LSAME( TRANS, 'N' ) ) $ TPSD = .FALSE.* IF( M.GE.N ) THEN NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 ) IF( TPSD ) THEN NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LN', M, NRHS, N, $ -1 ) ) ELSE NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, $ -1 ) ) END IF ELSE NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 ) IF( TPSD ) THEN NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, $ -1 ) ) ELSE NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LN', N, NRHS, M, $ -1 ) ) END IF END IF* WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB ) WORK( 1 ) = DBLE( WSIZE )* END IF* IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGELS ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF** Quick return if possible* IF( MIN( M, N, NRHS ).EQ.0 ) THEN CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) RETURN END IF** Get machine parameters* OPCNT( GELS ) = OPCNT( GELS ) + DBLE( 2 ) SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) BIGNUM = ONE / SMLNUM CALL DLABAD( SMLNUM, BIGNUM )** Scale A, B if max element outside range [SMLNUM,BIGNUM]* ANRM = DLANGE( 'M', M, N, A, LDA, RWORK ) IASCL = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN** Scale matrix norm up to SMLNUM* OPCNT( GELS ) = OPCNT( GELS ) + DBLE( M*N ) CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -