⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zlalsd.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,     $                   RANK, WORK, RWORK, IWORK, INFO )**  -- LAPACK routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999**     .. Scalar Arguments ..      CHARACTER          UPLO      INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ      DOUBLE PRECISION   RCOND*     ..*     .. Array Arguments ..      INTEGER            IWORK( * )      DOUBLE PRECISION   D( * ), E( * ), RWORK( * )      COMPLEX*16         B( LDB, * ), WORK( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..**  Purpose*  =======**  ZLALSD uses the singular value decomposition of A to solve the least*  squares problem of finding X to minimize the Euclidean norm of each*  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B*  are N-by-NRHS. The solution X overwrites B.**  The singular values of A smaller than RCOND times the largest*  singular value are treated as zero in solving the least squares*  problem; in this case a minimum norm solution is returned.*  The actual singular values are returned in D in ascending order.**  This code makes very mild assumptions about floating point*  arithmetic. It will work on machines with a guard digit in*  add/subtract, or on those binary machines without guard digits*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.*  It could conceivably fail on hexadecimal or decimal machines*  without guard digits, but we know of none.**  Arguments*  =========**  UPLO   (input) CHARACTER*1*         = 'U': D and E define an upper bidiagonal matrix.*         = 'L': D and E define a  lower bidiagonal matrix.**  SMLSIZ (input) INTEGER*         The maximum size of the subproblems at the bottom of the*         computation tree.**  N      (input) INTEGER*         The dimension of the  bidiagonal matrix.  N >= 0.**  NRHS   (input) INTEGER*         The number of columns of B. NRHS must be at least 1.**  D      (input/output) DOUBLE PRECISION array, dimension (N)*         On entry D contains the main diagonal of the bidiagonal*         matrix. On exit, if INFO = 0, D contains its singular values.**  E      (input) DOUBLE PRECISION array, dimension (N-1)*         Contains the super-diagonal entries of the bidiagonal matrix.*         On exit, E has been destroyed.**  B      (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)*         On input, B contains the right hand sides of the least*         squares problem. On output, B contains the solution X.**  LDB    (input) INTEGER*         The leading dimension of B in the calling subprogram.*         LDB must be at least max(1,N).**  RCOND  (input) DOUBLE PRECISION*         The singular values of A less than or equal to RCOND times*         the largest singular value are treated as zero in solving*         the least squares problem. If RCOND is negative,*         machine precision is used instead.*         For example, if diag(S)*X=B were the least squares problem,*         where diag(S) is a diagonal matrix of singular values, the*         solution would be X(i) = B(i) / S(i) if S(i) is greater than*         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to*         RCOND*max(S).**  RANK   (output) INTEGER*         The number of singular values of A greater than RCOND times*         the largest singular value.**  WORK   (workspace) COMPLEX*16 array, dimension at least*         (N * NRHS).**  RWORK  (workspace) DOUBLE PRECISION array, dimension at least*         (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + (SMLSIZ+1)**2),*         where*         NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )**  IWORK  (workspace) INTEGER array, dimension at least*         (3*N*NLVL + 11*N).**  INFO   (output) INTEGER*         = 0:  successful exit.*         < 0:  if INFO = -i, the i-th argument had an illegal value.*         > 0:  The algorithm failed to compute an singular value while*               working on the submatrix lying in rows and columns*               INFO/(N+1) through MOD(INFO,N+1).**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ZERO, ONE, TWO      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )      COMPLEX*16         CZERO      PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )*     ..*     .. Local Scalars ..      INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,     $                   GIVPTR, I, ICMPQ1, ICMPQ2, IRWB, IRWIB, IRWRB,     $                   IRWU, IRWVT, IRWWRK, IWK, J, JCOL, JIMAG,     $                   JREAL, JROW, K, NLVL, NM1, NRWORK, NSIZE, NSUB,     $                   PERM, POLES, S, SIZEI, SMLSZP, SQRE, ST, ST1,     $                   U, VT, Z      DOUBLE PRECISION   CS, EPS, ORGNRM, R, SN, TOL*     ..*     .. External Subroutines ..      EXTERNAL           ZDROT, ZCOPY, ZLACPY,     $                   ZLALSA, ZLASCL, ZLASET, DGEMM,     $                   DLARTG, DLASCL, DLASDA, DLASDQ,     $                   DLASET, DLASRT, XERBLA*     ..*     .. External Functions ..      INTEGER            IDAMAX      DOUBLE PRECISION   DLAMCH, DLANST, DOPBL3      EXTERNAL           IDAMAX, DLAMCH, DLANST, DOPBL3*     ..*     .. Intrinsic Functions ..      INTRINSIC          DCMPLX, DBLE, DIMAG, ABS, INT, LOG, SIGN*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( N.LT.0 ) THEN         INFO = -3      ELSE IF( NRHS.LT.1 ) THEN         INFO = -4      ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN         INFO = -8      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'ZLALSD', -INFO )         RETURN      END IF*      EPS = DLAMCH( 'Epsilon' )**     Set up the tolerance.*      IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN         RCOND = EPS      END IF*      RANK = 0**     Quick return if possible.*      IF( N.EQ.0 ) THEN         RETURN      ELSE IF( N.EQ.1 ) THEN         IF( D( 1 ).EQ.ZERO ) THEN            CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, B, LDB )         ELSE            RANK = 1            OPS = OPS + DBLE( 2*NRHS )            CALL ZLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )            D( 1 ) = ABS( D( 1 ) )         END IF         RETURN      END IF**     Rotate the matrix if it is lower bidiagonal.*      IF( UPLO.EQ.'L' ) THEN         OPS = OPS + DBLE( 6*( N-1 ) )         DO 10 I = 1, N - 1            CALL DLARTG( D( I ), E( I ), CS, SN, R )            D( I ) = R            E( I ) = SN*D( I+1 )            D( I+1 ) = CS*D( I+1 )            IF( NRHS.EQ.1 ) THEN               OPS = OPS + DBLE( 12 )               CALL ZDROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )            ELSE               RWORK( I*2-1 ) = CS               RWORK( I*2 ) = SN            END IF   10    CONTINUE         IF( NRHS.GT.1 ) THEN            OPS = OPS + DBLE( 12*( N-1 )*NRHS )            DO 30 I = 1, NRHS               DO 20 J = 1, N - 1                  CS = RWORK( J*2-1 )                  SN = RWORK( J*2 )                  CALL ZDROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )   20          CONTINUE   30       CONTINUE         END IF      END IF**     Scale.*      NM1 = N - 1      ORGNRM = DLANST( 'M', N, D, E )      IF( ORGNRM.EQ.ZERO ) THEN         CALL ZLASET( 'A', N, NRHS, CZERO, CZERO, B, LDB )         RETURN      END IF*      OPS = OPS + DBLE( N + NM1 )      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )**     If N is smaller than the minimum divide size SMLSIZ, then solve*     the problem with another solver.*      IF( N.LE.SMLSIZ ) THEN         IRWU = 1         IRWVT = IRWU + N*N         IRWWRK = IRWVT + N*N         IRWRB = IRWWRK         IRWIB = IRWRB + N*NRHS         IRWB = IRWIB + N*NRHS         CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWU ), N )         CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWVT ), N )         CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, RWORK( IRWVT ), N,     $                RWORK( IRWU ), N, RWORK( IRWWRK ), 1,     $                RWORK( IRWWRK ), INFO )         IF( INFO.NE.0 ) THEN            RETURN         END IF**        In the real version, B is passed to DLASDQ and multiplied*        internally by Q'. Here B is complex and that product is*        computed below in two steps (real and imaginary parts).*         J = IRWB - 1         DO 50 JCOL = 1, NRHS            DO 40 JROW = 1, N               J = J + 1               RWORK( J ) = DBLE( B( JROW, JCOL ) )   40       CONTINUE   50    CONTINUE         OPS = OPS + DOPBL3( 'DGEMM ', N, NRHS, N )          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,     $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )         J = IRWB - 1         DO 70 JCOL = 1, NRHS            DO 60 JROW = 1, N               J = J + 1               RWORK( J ) = DIMAG( B( JROW, JCOL ) )   60       CONTINUE   70    CONTINUE         OPS = OPS + DOPBL3( 'DGEMM ', N, NRHS, N )          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,     $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )         JREAL = IRWRB - 1         JIMAG = IRWIB - 1         DO 90 JCOL = 1, NRHS            DO 80 JROW = 1, N               JREAL = JREAL + 1               JIMAG = JIMAG + 1               B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),     $                           RWORK( JIMAG ) )   80       CONTINUE   90    CONTINUE*         OPS = OPS + DBLE( 1 )         TOL = RCOND*ABS( D( IDAMAX( N, D, 1 ) ) )         DO 100 I = 1, N            IF( D( I ).LE.TOL ) THEN               CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )            ELSE               OPS = OPS + DBLE( 6*NRHS )               CALL ZLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),     $                      LDB, INFO )               RANK = RANK + 1            END IF  100    CONTINUE**        Since B is complex, the following call to DGEMM is performed*        in two steps (real and imaginary parts). That is for V * B*        (in the real version of the code V' is stored in WORK).**        CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,*    $               WORK( NWORK ), N )*         J = IRWB - 1         DO 120 JCOL = 1, NRHS            DO 110 JROW = 1, N               J = J + 1               RWORK( J ) = DBLE( B( JROW, JCOL ) )  110       CONTINUE  120    CONTINUE

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -