⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgelsy.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,     $                   WORK, LWORK, RWORK, INFO )**  -- LAPACK driver routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     June 30, 1999**     .. Scalar Arguments ..      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK      DOUBLE PRECISION   RCOND*     ..*     .. Array Arguments ..      INTEGER            JPVT( * )      DOUBLE PRECISION   RWORK( * )      COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )*     ..*     Common blocks to return operation counts and timings*     .. Common blocks ..      COMMON             / LATIME / OPS, ITCNT      COMMON             / LSTIME / OPCNT, TIMNG*     ..*     .. Scalars in Common ..      DOUBLE PRECISION   ITCNT, OPS*     ..*     .. Arrays in Common ..      DOUBLE PRECISION   OPCNT( 6 ), TIMNG( 6 )*     ..**  Purpose*  =======**  ZGELSY computes the minimum-norm solution to a complex linear least*  squares problem:*      min || A * X - B ||*  using a complete orthogonal factorization of A.  A is an M-by-N*  matrix which may be rank-deficient.**  Several right hand side vectors b and solution vectors x can be*  handled in a single call; they are stored as the columns of the*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution*  matrix X.**  The routine first computes a QR factorization with column pivoting:*      A * P = Q * [ R11 R12 ]*                  [  0  R22 ]*  with R11 defined as the largest leading submatrix whose estimated*  condition number is less than 1/RCOND.  The order of R11, RANK,*  is the effective rank of A.**  Then, R22 is considered to be negligible, and R12 is annihilated*  by unitary transformations from the right, arriving at the*  complete orthogonal factorization:*     A * P = Q * [ T11 0 ] * Z*                 [  0  0 ]*  The minimum-norm solution is then*     X = P * Z' [ inv(T11)*Q1'*B ]*                [        0       ]*  where Q1 consists of the first RANK columns of Q.**  This routine is basically identical to the original xGELSX except*  three differences:*    o The permutation of matrix B (the right hand side) is faster and*      more simple.*    o The call to the subroutine xGEQPF has been substituted by the*      the call to the subroutine xGEQP3. This subroutine is a Blas-3*      version of the QR factorization with column pivoting.*    o Matrix B (the right hand side) is updated with Blas-3.**  Arguments*  =========**  M       (input) INTEGER*          The number of rows of the matrix A.  M >= 0.**  N       (input) INTEGER*          The number of columns of the matrix A.  N >= 0.**  NRHS    (input) INTEGER*          The number of right hand sides, i.e., the number of*          columns of matrices B and X. NRHS >= 0.**  A       (input/output) COMPLEX*16 array, dimension (LDA,N)*          On entry, the M-by-N matrix A.*          On exit, A has been overwritten by details of its*          complete orthogonal factorization.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,M).**  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)*          On entry, the M-by-NRHS right hand side matrix B.*          On exit, the N-by-NRHS solution matrix X.**  LDB     (input) INTEGER*          The leading dimension of the array B. LDB >= max(1,M,N).**  JPVT    (input/output) INTEGER array, dimension (N)*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted*          to the front of AP, otherwise column i is a free column.*          On exit, if JPVT(i) = k, then the i-th column of A*P*          was the k-th column of A.**  RCOND   (input) DOUBLE PRECISION*          RCOND is used to determine the effective rank of A, which*          is defined as the order of the largest leading triangular*          submatrix R11 in the QR factorization with pivoting of A,*          whose estimated condition number < 1/RCOND.**  RANK    (output) INTEGER*          The effective rank of A, i.e., the order of the submatrix*          R11.  This is the same as the order of the submatrix T11*          in the complete orthogonal factorization of A.**  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.**  LWORK   (input) INTEGER*          The dimension of the array WORK.*          The unblocked strategy requires that:*            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )*          where MN = min(M,N).*          The block algorithm requires that:*            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )*          where NB is an upper bound on the blocksize returned*          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR,*          and ZUNMRZ.**          If LWORK = -1, then a workspace query is assumed; the routine*          only calculates the optimal size of the WORK array, returns*          this value as the first entry of the WORK array, and no error*          message related to LWORK is issued by XERBLA.**  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)**  INFO    (output) INTEGER*          = 0: successful exit*          < 0: if INFO = -i, the i-th argument had an illegal value**  Further Details*  ===============**  Based on contributions by*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA*    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain**  =====================================================================**     .. Parameters ..      INTEGER            IMAX, IMIN      PARAMETER          ( IMAX = 1, IMIN = 2 )      DOUBLE PRECISION   ZERO, ONE      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )      COMPLEX*16         CZERO, CONE      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),     $                   CONE = ( 1.0D+0, 0.0D+0 ) )*     ..*     .. Local Scalars ..      LOGICAL            LQUERY      INTEGER            GELSY, GEQP3, I, IASCL, IBSCL, ISMAX, ISMIN, J,     $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4, TRSM,     $                   TZRZF, UNMQR, UNMRZ      DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,     $                   SMLNUM, T1, T2, WSIZE      COMPLEX*16         C1, C2, S1, S2*     ..*     .. External Functions ..      INTEGER            ILAENV      DOUBLE PRECISION   DLAMCH, DOPBL3, DOPLA, DSECND, ZLANGE      EXTERNAL           ILAENV, DLAMCH, DOPBL3, DOPLA, DSECND, ZLANGE*     ..*     .. External Subroutines ..      EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEQP3, ZLAIC1, ZLASCL,     $                   ZLASET, ZTRSM, ZTZRZF, ZUNMQR, ZUNMRZ*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN*     ..*     .. Data statements ..      DATA               GELSY / 1 / , GEQP3 / 2 / , TRSM / 5 / ,     $                   TZRZF / 3 / , UNMQR / 4 / , UNMRZ / 6 /*     ..*     .. Executable Statements ..*      MN = MIN( M, N )      ISMIN = MN + 1      ISMAX = 2*MN + 1**     Test the input arguments.*      INFO = 0      NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )      NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )      NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, NRHS, -1 )      NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, NRHS, -1 )      NB = MAX( NB1, NB2, NB3, NB4 )      LWKOPT = MAX( 1, MN+2*N+NB*( N+1 ), 2*MN+NB*NRHS )      WORK( 1 ) = DCMPLX( LWKOPT )      LQUERY = ( LWORK.EQ.-1 )      IF( M.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( NRHS.LT.0 ) THEN         INFO = -3      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -5      ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN         INFO = -7      ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. .NOT.     $         LQUERY ) THEN         INFO = -12      END IF*      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'ZGELSY', -INFO )         RETURN      ELSE IF( LQUERY ) THEN         RETURN      END IF**     Quick return if possible*      IF( MIN( M, N, NRHS ).EQ.0 ) THEN         RANK = 0         RETURN      END IF**     Get machine parameters*      OPCNT( GELSY ) = OPCNT( GELSY ) + DBLE( 2 )      SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )      BIGNUM = ONE / SMLNUM      CALL DLABAD( SMLNUM, BIGNUM )**     Scale A, B if max entries outside range [SMLNUM,BIGNUM]*      ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )      IASCL = 0      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN**        Scale matrix norm up to SMLNUM*         OPCNT( GELSY ) = OPCNT( GELSY ) + DBLE( 6*M*N )         CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )         IASCL = 1      ELSE IF( ANRM.GT.BIGNUM ) THEN**        Scale matrix norm down to BIGNUM*         OPCNT( GELSY ) = OPCNT( GELSY ) + DBLE( 6*M*N )         CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )         IASCL = 2      ELSE IF( ANRM.EQ.ZERO ) THEN**        Matrix all zero. Return zero solution.*         CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )         RANK = 0         GO TO 70      END IF*      BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )      IBSCL = 0      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN**        Scale matrix norm up to SMLNUM*         OPCNT( GELSY ) = OPCNT( GELSY ) + DBLE( 6*M*NRHS )         CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )         IBSCL = 1      ELSE IF( BNRM.GT.BIGNUM ) THEN**        Scale matrix norm down to BIGNUM*         OPCNT( GELSY ) = OPCNT( GELSY ) + DBLE( 6*M*NRHS )         CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )         IBSCL = 2      END IF**     Compute QR factorization with column pivoting of A:*        A * P = Q * R*      OPCNT( GEQP3 ) = OPCNT( GEQP3 ) + DOPLA( 'ZGEQPF', M, N, 0, 0, 0 )      T1 = DSECND( )      CALL ZGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),     $             LWORK-MN, RWORK, INFO )      T2 = DSECND( )      TIMNG( GEQP3 ) = TIMNG( GEQP3 ) + ( T2-T1 )      WSIZE = MN + DBLE( WORK( MN+1 ) )**     complex workspace: MN+NB*(N+1). real workspace 2*N.*     Details of Householder rotations stored in WORK(1:MN).**     Determine RANK using incremental condition estimation*      WORK( ISMIN ) = CONE      WORK( ISMAX ) = CONE      SMAX = ABS( A( 1, 1 ) )      SMIN = SMAX      IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN         RANK = 0         CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )         GO TO 70      ELSE         RANK = 1      END IF*   10 CONTINUE      IF( RANK.LT.MN ) THEN         I = RANK + 1         OPS = 0         CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),     $                A( I, I ), SMINPR, S1, C1 )         CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),     $                A( I, I ), SMAXPR, S2, C2 )         OPCNT( GELSY ) = OPCNT( GELSY ) + OPS + DBLE( 1 )*         IF( SMAXPR*RCOND.LE.SMINPR ) THEN            OPCNT( GELSY ) = OPCNT( GELSY ) + DBLE( RANK*6 )            DO 20 I = 1, RANK               WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )               WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )   20       CONTINUE            WORK( ISMIN+RANK ) = C1            WORK( ISMAX+RANK ) = C2            SMIN = SMINPR            SMAX = SMAXPR            RANK = RANK + 1            GO TO 10         END IF      END IF**     complex workspace: 3*MN.**     Logically partition R = [ R11 R12 ]*                             [  0  R22 ]*     where R11 = R(1:RANK,1:RANK)**     [R11,R12] = [ T11, 0 ] * Y*      IF( RANK.LT.N ) THEN         OPCNT( TZRZF ) = OPCNT( TZRZF ) +     $                    DOPLA( 'ZTZRQF', RANK, N, 0, 0, 0 )         T1 = DSECND( )         CALL ZTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),     $                LWORK-2*MN, INFO )         T2 = DSECND( )         TIMNG( TZRZF ) = TIMNG( TZRZF ) + ( T2-T1 )      END IF**     complex workspace: 2*MN.*     Details of Householder rotations stored in WORK(MN+1:2*MN)**     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)*      OPCNT( UNMQR ) = OPCNT( UNMQR ) +     $                 DOPLA( 'ZUNMQR', M, NRHS, MN, 0, 0 )      T1 = DSECND( )      CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,     $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )      T2 = DSECND( )      TIMNG( UNMQR ) = TIMNG( UNMQR ) + ( T2-T1 )      WSIZE = MAX( WSIZE, 2*MN+DBLE( WORK( 2*MN+1 ) ) )**     complex workspace: 2*MN+NB*NRHS.**     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)*      OPCNT( TRSM ) = OPCNT( TRSM ) + DOPBL3( 'ZTRSM ', RANK, NRHS, 0 )      T1 = DSECND( )      CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,     $            NRHS, CONE, A, LDA, B, LDB )      T2 = DSECND( )      TIMNG( TRSM ) = TIMNG( TRSM ) + ( T2-T1 )*      DO 40 J = 1, NRHS         DO 30 I = RANK + 1, N            B( I, J ) = CZERO   30    CONTINUE   40 CONTINUE**     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)*      IF( RANK.LT.N ) THEN         NB = ILAENV( 1, 'UNMRQ', 'LC', N, NRHS, RANK, -1 )         OPCNT( UNMRZ ) = OPCNT( UNMRZ ) +     $                    DOPLA( 'ZUNMRQ', N, NRHS, RANK, 0, NB )         T1 = DSECND( )         CALL ZUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,     $                N-RANK, A, LDA, WORK( MN+1 ), B, LDB,     $                WORK( 2*MN+1 ), LWORK-2*MN, INFO )         T2 = DSECND( )         TIMNG( UNMRZ ) = TIMNG( UNMRZ ) + ( T2-T1 )      END IF**     complex workspace: 2*MN+NRHS.**     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)*      DO 60 J = 1, NRHS         DO 50 I = 1, N            WORK( JPVT( I ) ) = B( I, J )   50    CONTINUE         CALL ZCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )   60 CONTINUE**     complex workspace: N.**     Undo scaling*      IF( IASCL.EQ.1 ) THEN         OPCNT( GELSY ) = OPCNT( GELSY ) +     $                    DBLE( ( N*NRHS+RANK*RANK )*6 )         CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )         CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,     $                INFO )      ELSE IF( IASCL.EQ.2 ) THEN         OPCNT( GELSY ) = OPCNT( GELSY ) +     $                    DBLE( ( N*NRHS+RANK*RANK )*6 )         CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )         CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,     $                INFO )      END IF      IF( IBSCL.EQ.1 ) THEN         OPCNT( GELSY ) = OPCNT( GELSY ) + DBLE( N*NRHS*6 )         CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )      ELSE IF( IBSCL.EQ.2 ) THEN         OPCNT( GELSY ) = OPCNT( GELSY ) + DBLE( N*NRHS*6 )         CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )      END IF*   70 CONTINUE      WORK( 1 ) = DCMPLX( LWKOPT )*      RETURN**     End of ZGELSY*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -