⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cgelsd.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,     $                   WORK, LWORK, RWORK, IWORK, INFO )**  -- LAPACK driver routine (version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999**     .. Scalar Arguments ..      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK      REAL               RCOND*     ..*     .. Array Arguments ..      INTEGER            IWORK( * )      REAL               RWORK( * ), S( * )      COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )*     ..**  Purpose*  =======**  CGELSD computes the minimum-norm solution to a real linear least*  squares problem:*      minimize 2-norm(| b - A*x |)*  using the singular value decomposition (SVD) of A. A is an M-by-N*  matrix which may be rank-deficient.**  Several right hand side vectors b and solution vectors x can be*  handled in a single call; they are stored as the columns of the*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution*  matrix X.**  The problem is solved in three steps:*  (1) Reduce the coefficient matrix A to bidiagonal form with*      Householder tranformations, reducing the original problem*      into a "bidiagonal least squares problem" (BLS)*  (2) Solve the BLS using a divide and conquer approach.*  (3) Apply back all the Householder tranformations to solve*      the original least squares problem.**  The effective rank of A is determined by treating as zero those*  singular values which are less than RCOND times the largest singular*  value.**  The divide and conquer algorithm makes very mild assumptions about*  floating point arithmetic. It will work on machines with a guard*  digit in add/subtract, or on those binary machines without guard*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or*  Cray-2. It could conceivably fail on hexadecimal or decimal machines*  without guard digits, but we know of none.**  Arguments*  =========**  M       (input) INTEGER*          The number of rows of the matrix A. M >= 0.**  N       (input) INTEGER*          The number of columns of the matrix A. N >= 0.**  NRHS    (input) INTEGER*          The number of right hand sides, i.e., the number of columns*          of the matrices B and X. NRHS >= 0.**  A       (input) COMPLEX array, dimension (LDA,N)*          On entry, the M-by-N matrix A.*          On exit, A has been destroyed.**  LDA     (input) INTEGER*          The leading dimension of the array A. LDA >= max(1,M).**  B       (input/output) COMPLEX array, dimension (LDB,NRHS)*          On entry, the M-by-NRHS right hand side matrix B.*          On exit, B is overwritten by the N-by-NRHS solution matrix X.*          If m >= n and RANK = n, the residual sum-of-squares for*          the solution in the i-th column is given by the sum of*          squares of elements n+1:m in that column.**  LDB     (input) INTEGER*          The leading dimension of the array B.  LDB >= max(1,M,N).**  S       (output) REAL array, dimension (min(M,N))*          The singular values of A in decreasing order.*          The condition number of A in the 2-norm = S(1)/S(min(m,n)).**  RCOND   (input) REAL*          RCOND is used to determine the effective rank of A.*          Singular values S(i) <= RCOND*S(1) are treated as zero.*          If RCOND < 0, machine precision is used instead.**  RANK    (output) INTEGER*          The effective rank of A, i.e., the number of singular values*          which are greater than RCOND*S(1).**  WORK    (workspace/output) COMPLEX array, dimension (LWORK)*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.**  LWORK   (input) INTEGER*          The dimension of the array WORK. LWORK must be at least 1.*          The exact minimum amount of workspace needed depends on M,*          N and NRHS. As long as LWORK is at least*              2 * N + N * NRHS*          if M is greater than or equal to N or*              2 * M + M * NRHS*          if M is less than N, the code will execute correctly.*          For good performance, LWORK should generally be larger.**          If LWORK = -1, then a workspace query is assumed; the routine*          only calculates the optimal size of the WORK array, returns*          this value as the first entry of the WORK array, and no error*          message related to LWORK is issued by XERBLA.**  RWORK   (workspace) REAL array, dimension at least*             10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +*             (SMLSIZ+1)**2*          if M is greater than or equal to N or*             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +*             (SMLSIZ+1)**2*          if M is less than N, the code will execute correctly.*          SMLSIZ is returned by ILAENV and is equal to the maximum*          size of the subproblems at the bottom of the computation*          tree (usually about 25), and*             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )**  IWORK   (workspace) INTEGER array, dimension (LIWORK)*          LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,*          where MINMN = MIN( M,N ).**  INFO    (output) INTEGER*          = 0: successful exit*          < 0: if INFO = -i, the i-th argument had an illegal value.*          > 0:  the algorithm for computing the SVD failed to converge;*                if INFO = i, i off-diagonal elements of an intermediate*                bidiagonal form did not converge to zero.**  Further Details*  ===============**  Based on contributions by*     Ming Gu and Ren-Cang Li, Computer Science Division, University of*       California at Berkeley, USA*     Osni Marques, LBNL/NERSC, USA**  =====================================================================**     .. Parameters ..      REAL               ZERO, ONE      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )      COMPLEX            CZERO      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )*     ..*     .. Local Scalars ..      LOGICAL            LQUERY      INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,     $                   LDWORK, MAXMN, MAXWRK, MINMN, MINWRK, MM,     $                   MNTHR, NRWORK, NWORK, SMLSIZ      REAL               ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM*     ..*     .. External Subroutines ..      EXTERNAL           CGEBRD, CGELQF, CGEQRF, CLACPY,     $                   CLALSD, CLASCL, CLASET, CUNMBR,     $                   CUNMLQ, CUNMQR, SLABAD, SLASCL,     $                   SLASET, XERBLA*     ..*     .. External Functions ..      INTEGER            ILAENV      REAL               CLANGE, SLAMCH      EXTERNAL           CLANGE, SLAMCH, ILAENV*     ..*     .. Intrinsic Functions ..      INTRINSIC          CMPLX, MAX, MIN*     ..*     .. Executable Statements ..**     Test the input arguments.*      INFO = 0      MINMN = MIN( M, N )      MAXMN = MAX( M, N )      MNTHR = ILAENV( 6, 'CGELSD', ' ', M, N, NRHS, -1 )      LQUERY = ( LWORK.EQ.-1 )      IF( M.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( NRHS.LT.0 ) THEN         INFO = -3      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -5      ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN         INFO = -7      END IF*      SMLSIZ = ILAENV( 9, 'CGELSD', ' ', 0, 0, 0, 0 )**     Compute workspace.*     (Note: Comments in the code beginning "Workspace:" describe the*     minimal amount of workspace needed at that point in the code,*     as well as the preferred amount for good performance.*     NB refers to the optimal block size for the immediately*     following subroutine, as returned by ILAENV.)*      MINWRK = 1      IF( INFO.EQ.0 ) THEN         MAXWRK = 0         MM = M         IF( M.GE.N .AND. M.GE.MNTHR ) THEN**           Path 1a - overdetermined, with many more rows than columns.*            MM = N            MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'CGEQRF', ' ', M, N, -1,     $               -1 ) )            MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'CUNMQR', 'LC', M,     $               NRHS, N, -1 ) )         END IF         IF( M.GE.N ) THEN**           Path 1 - overdetermined or exactly determined.*            MAXWRK = MAX( MAXWRK, 2*N+( MM+N )*     $               ILAENV( 1, 'CGEBRD', ' ', MM, N, -1, -1 ) )            MAXWRK = MAX( MAXWRK, 2*N+NRHS*     $               ILAENV( 1, 'CUNMBR', 'QLC', MM, NRHS, N, -1 ) )            MAXWRK = MAX( MAXWRK, 2*N+( N-1 )*     $               ILAENV( 1, 'CUNMBR', 'PLN', N, NRHS, N, -1 ) )            MAXWRK = MAX( MAXWRK, 2*N+N*NRHS )            MINWRK = MAX( 2*N+MM, 2*N+N*NRHS )         END IF         IF( N.GT.M ) THEN            IF( N.GE.MNTHR ) THEN**              Path 2a - underdetermined, with many more columns*              than rows.*               MAXWRK = M + M*ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )               MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*     $                  ILAENV( 1, 'CGEBRD', ' ', M, M, -1, -1 ) )               MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*     $                  ILAENV( 1, 'CUNMBR', 'QLC', M, NRHS, M, -1 ) )               MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*     $                  ILAENV( 1, 'CUNMLQ', 'LC', N, NRHS, M, -1 ) )               IF( NRHS.GT.1 ) THEN                  MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )               ELSE                  MAXWRK = MAX( MAXWRK, M*M+2*M )               END IF               MAXWRK = MAX( MAXWRK, M*M+4*M+M*NRHS )            ELSE**              Path 2 - underdetermined.*               MAXWRK = 2*M + ( N+M )*ILAENV( 1, 'CGEBRD', ' ', M, N,     $                  -1, -1 )               MAXWRK = MAX( MAXWRK, 2*M+NRHS*     $                  ILAENV( 1, 'CUNMBR', 'QLC', M, NRHS, M, -1 ) )               MAXWRK = MAX( MAXWRK, 2*M+M*     $                  ILAENV( 1, 'CUNMBR', 'PLN', N, NRHS, M, -1 ) )               MAXWRK = MAX( MAXWRK, 2*M+M*NRHS )            END IF            MINWRK = MAX( 2*M+N, 2*M+M*NRHS )         END IF         MINWRK = MIN( MINWRK, MAXWRK )         WORK( 1 ) = CMPLX( MAXWRK, 0 )         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN            INFO = -12         END IF      END IF*      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'CGELSD', -INFO )         RETURN      ELSE IF( LQUERY ) THEN         GO TO 10

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -