⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slalsd.f

📁 计算矩阵的经典开源库.全世界都在用它.相信你也不能例外.
💻 F
字号:
      SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,     $                   RANK, WORK, IWORK, INFO )**  -- LAPACK routine (instrumented to count ops, version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     October 31, 1999**     .. Scalar Arguments ..      CHARACTER          UPLO      INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ      REAL               RCOND*     ..*     .. Array Arguments ..      INTEGER            IWORK( * )      REAL               B( LDB, * ), D( * ), E( * ), WORK( * )*     ..*     .. Common block to return operation count ..      COMMON             / LATIME / OPS, ITCNT*     ..*     .. Scalars in Common ..      REAL               ITCNT, OPS*     ..**  Purpose*  =======**  SLALSD uses the singular value decomposition of A to solve the least*  squares problem of finding X to minimize the Euclidean norm of each*  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B*  are N-by-NRHS. The solution X overwrites B.**  The singular values of A smaller than RCOND times the largest*  singular value are treated as zero in solving the least squares*  problem; in this case a minimum norm solution is returned.*  The actual singular values are returned in D in ascending order.**  This code makes very mild assumptions about floating point*  arithmetic. It will work on machines with a guard digit in*  add/subtract, or on those binary machines without guard digits*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.*  It could conceivably fail on hexadecimal or decimal machines*  without guard digits, but we know of none.**  Arguments*  =========**  UPLO   (input) CHARACTER*1*         = 'U': D and E define an upper bidiagonal matrix.*         = 'L': D and E define a  lower bidiagonal matrix.**  SMLSIZ (input) INTEGER*         The maximum size of the subproblems at the bottom of the*         computation tree.**  N      (input) INTEGER*         The dimension of the  bidiagonal matrix.  N >= 0.**  NRHS   (input) INTEGER*         The number of columns of B. NRHS must be at least 1.**  D      (input/output) REAL array, dimension (N)*         On entry D contains the main diagonal of the bidiagonal*         matrix. On exit, if INFO = 0, D contains its singular values.**  E      (input) REAL array, dimension (N-1)*         Contains the super-diagonal entries of the bidiagonal matrix.*         On exit, E has been destroyed.**  B      (input/output) REAL array, dimension (LDB,NRHS)*         On input, B contains the right hand sides of the least*         squares problem. On output, B contains the solution X.**  LDB    (input) INTEGER*         The leading dimension of B in the calling subprogram.*         LDB must be at least max(1,N).**  RCOND  (input) REAL*         The singular values of A less than or equal to RCOND times*         the largest singular value are treated as zero in solving*         the least squares problem. If RCOND is negative,*         machine precision is used instead.*         For example, if diag(S)*X=B were the least squares problem,*         where diag(S) is a diagonal matrix of singular values, the*         solution would be X(i) = B(i) / S(i) if S(i) is greater than*         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to*         RCOND*max(S).**  RANK   (output) INTEGER*         The number of singular values of A greater than RCOND times*         the largest singular value.**  WORK   (workspace) REAL array, dimension at least*         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),*         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).**  IWORK  (workspace) INTEGER array, dimension at least*         (3 * N * NLVL + 11 * N)**  INFO   (output) INTEGER*         = 0:  successful exit.*         < 0:  if INFO = -i, the i-th argument had an illegal value.*         > 0:  The algorithm failed to compute an singular value while*               working on the submatrix lying in rows and columns*               INFO/(N+1) through MOD(INFO,N+1).**  =====================================================================**     .. Parameters ..      REAL               ZERO, ONE, TWO      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )*     ..*     .. Local Scalars ..      INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,     $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,     $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,     $                   SMLSZP, SQRE, ST, ST1, U, VT, Z      REAL               CS, EPS, ORGNRM, R, SN, TOL*     ..*     .. External Subroutines ..      EXTERNAL           SCOPY, SGEMM, SLACPY, SLALSA, SLARTG, SLASCL,     $                   SLASDA, SLASDQ, SLASET, SLASRT, SROT, XERBLA*     ..*     .. External Functions ..      INTEGER            ISAMAX      REAL               SLAMCH, SLANST, SOPBL3      EXTERNAL           ISAMAX, SLAMCH, SLANST, SOPBL3*     ..*     .. Intrinsic Functions ..      INTRINSIC          REAL, ABS, INT, LOG, SIGN*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0*      IF( N.LT.0 ) THEN         INFO = -3      ELSE IF( NRHS.LT.1 ) THEN         INFO = -4      ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN         INFO = -8      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'SLALSD', -INFO )         RETURN      END IF*      EPS = SLAMCH( 'Epsilon' )**     Set up the tolerance.*      IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN         RCOND = EPS      END IF*      RANK = 0**     Quick return if possible.*      IF( N.EQ.0 ) THEN         RETURN      ELSE IF( N.EQ.1 ) THEN         IF( D( 1 ).EQ.ZERO ) THEN            CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )         ELSE            RANK = 1            OPS = OPS + REAL( 2*NRHS )            CALL SLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )            D( 1 ) = ABS( D( 1 ) )         END IF         RETURN      END IF**     Rotate the matrix if it is lower bidiagonal.*      IF( UPLO.EQ.'L' ) THEN         OPS = OPS + REAL( 6*( N-1 ) )         DO 10 I = 1, N - 1            CALL SLARTG( D( I ), E( I ), CS, SN, R )            D( I ) = R            E( I ) = SN*D( I+1 )            D( I+1 ) = CS*D( I+1 )            IF( NRHS.EQ.1 ) THEN               OPS = OPS + REAL( 6 )               CALL SROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )            ELSE               WORK( I*2-1 ) = CS               WORK( I*2 ) = SN            END IF   10    CONTINUE         IF( NRHS.GT.1 ) THEN            OPS = OPS + REAL( 6*( N-1 )*NRHS )            DO 30 I = 1, NRHS               DO 20 J = 1, N - 1                  CS = WORK( J*2-1 )                  SN = WORK( J*2 )                  CALL SROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )   20          CONTINUE   30       CONTINUE         END IF      END IF**     Scale.*      NM1 = N - 1      ORGNRM = SLANST( 'M', N, D, E )      IF( ORGNRM.EQ.ZERO ) THEN         CALL SLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )         RETURN      END IF*      OPS = OPS + REAL( N + NM1 )      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )**     If N is smaller than the minimum divide size SMLSIZ, then solve*     the problem with another solver.*      IF( N.LE.SMLSIZ ) THEN         NWORK = 1 + N*N         CALL SLASET( 'A', N, N, ZERO, ONE, WORK, N )         CALL SLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,     $                LDB, WORK( NWORK ), INFO )         IF( INFO.NE.0 ) THEN            RETURN         END IF         OPS = OPS + REAL( 1 )         TOL = RCOND*ABS( D( ISAMAX( N, D, 1 ) ) )         DO 40 I = 1, N            IF( D( I ).LE.TOL ) THEN               CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )            ELSE               OPS = OPS + REAL( NRHS )               CALL SLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),     $                      LDB, INFO )               RANK = RANK + 1            END IF   40    CONTINUE         OPS = OPS + SOPBL3( 'SGEMM ', N, NRHS, N )         CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,     $               WORK( NWORK ), N )         CALL SLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )**        Unscale.*         OPS = OPS + REAL( N + N*NRHS )         CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )         CALL SLASRT( 'D', N, D, INFO )         CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )*         RETURN      END IF**     Book-keeping and setting up some constants.*      NLVL = INT( LOG( REAL( N ) / REAL( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1*      SMLSZP = SMLSIZ + 1*      U = 1      VT = 1 + SMLSIZ*N      DIFL = VT + SMLSZP*N      DIFR = DIFL + NLVL*N      Z = DIFR + NLVL*N*2      C = Z + NLVL*N      S = C + N      POLES = S + N      GIVNUM = POLES + 2*NLVL*N      BX = GIVNUM + 2*NLVL*N      NWORK = BX + N*NRHS*      SIZEI = 1 + N      K = SIZEI + N      GIVPTR = K + N      PERM = GIVPTR + N      GIVCOL = PERM + NLVL*N      IWK = GIVCOL + NLVL*N*2*      ST = 1      SQRE = 0      ICMPQ1 = 1      ICMPQ2 = 0      NSUB = 0*      DO 50 I = 1, N         IF( ABS( D( I ) ).LT.EPS ) THEN            D( I ) = SIGN( EPS, D( I ) )         END IF   50 CONTINUE*      DO 60 I = 1, NM1         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN            NSUB = NSUB + 1            IWORK( NSUB ) = ST**           Subproblem found. First determine its size and then*           apply divide and conquer on it.*            IF( I.LT.NM1 ) THEN**              A subproblem with E(I) small for I < NM1.*               NSIZE = I - ST + 1               IWORK( SIZEI+NSUB-1 ) = NSIZE            ELSE IF( ABS( E( I ) ).GE.EPS ) THEN**              A subproblem with E(NM1) not too small but I = NM1.*               NSIZE = N - ST + 1               IWORK( SIZEI+NSUB-1 ) = NSIZE            ELSE**              A subproblem with E(NM1) small. This implies an*              1-by-1 subproblem at D(N), which is not solved*              explicitly.*               NSIZE = I - ST + 1               IWORK( SIZEI+NSUB-1 ) = NSIZE               NSUB = NSUB + 1               IWORK( NSUB ) = N               IWORK( SIZEI+NSUB-1 ) = 1               CALL SCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )            END IF            ST1 = ST - 1            IF( NSIZE.EQ.1 ) THEN**              This is a 1-by-1 subproblem and is not solved*              explicitly.*               CALL SCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )            ELSE IF( NSIZE.LE.SMLSIZ ) THEN**              This is a small subproblem and is solved by SLASDQ.*               CALL SLASET( 'A', NSIZE, NSIZE, ZERO, ONE,     $                      WORK( VT+ST1 ), N )               CALL SLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),     $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),     $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )               IF( INFO.NE.0 ) THEN                  RETURN               END IF               CALL SLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,     $                      WORK( BX+ST1 ), N )            ELSE**              A large problem. Solve it using divide and conquer.*               CALL SLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),     $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),     $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),     $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),     $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),     $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),     $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),     $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),     $                      INFO )               IF( INFO.NE.0 ) THEN                  RETURN               END IF               BXST = BX + ST1               CALL SLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),     $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,     $                      WORK( VT+ST1 ), IWORK( K+ST1 ),     $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),     $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),     $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,     $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),     $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),     $                      IWORK( IWK ), INFO )               IF( INFO.NE.0 ) THEN                  RETURN               END IF            END IF            ST = I + 1         END IF   60 CONTINUE**     Apply the singular values and treat the tiny ones as zero.*      TOL = RCOND*ABS( D( ISAMAX( N, D, 1 ) ) )*      DO 70 I = 1, N**        Some of the elements in D can be negative because 1-by-1*        subproblems were not solved explicitly.*         IF( ABS( D( I ) ).LE.TOL ) THEN            CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )         ELSE            RANK = RANK + 1            OPS = OPS + REAL( NRHS )            CALL SLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,     $                   WORK( BX+I-1 ), N, INFO )         END IF         D( I ) = ABS( D( I ) )   70 CONTINUE**     Now apply back the right singular vectors.*      ICMPQ2 = 1      DO 80 I = 1, NSUB         ST = IWORK( I )         ST1 = ST - 1         NSIZE = IWORK( SIZEI+I-1 )         BXST = BX + ST1         IF( NSIZE.EQ.1 ) THEN            CALL SCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )         ELSE IF( NSIZE.LE.SMLSIZ ) THEN            OPS = OPS + SOPBL3( 'SGEMM ', NSIZE, NRHS, NSIZE )             CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,     $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,     $                  B( ST, 1 ), LDB )         ELSE            CALL SLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,     $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,     $                   WORK( VT+ST1 ), IWORK( K+ST1 ),     $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),     $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),     $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,     $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),     $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),     $                   IWORK( IWK ), INFO )            IF( INFO.NE.0 ) THEN               RETURN            END IF         END IF   80 CONTINUE**     Unscale and sort the singular values.*      OPS = OPS + REAL( N + N*NRHS )      CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )      CALL SLASRT( 'D', N, D, INFO )      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )*      RETURN**     End of SLALSD*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -