📄 zlalsa.f
字号:
DO 40 JCOL = 1, NRHS DO 30 JROW = NLF, NLF + NL - 1 J = J + 1 RWORK( J ) = DIMAG( B( JROW, JCOL ) ) 30 CONTINUE 40 CONTINUE OPS = OPS + DOPBL3( 'DGEMM ', NL, NRHS, NL ) CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, $ RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1+NL*NRHS ), $ NL ) JREAL = 0 JIMAG = NL*NRHS DO 60 JCOL = 1, NRHS DO 50 JROW = NLF, NLF + NL - 1 JREAL = JREAL + 1 JIMAG = JIMAG + 1 BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ), $ RWORK( JIMAG ) ) 50 CONTINUE 60 CONTINUE** Since B and BX are complex, the following call to DGEMM* is performed in two steps (real and imaginary parts).** CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )* J = NR*NRHS*2 DO 80 JCOL = 1, NRHS DO 70 JROW = NRF, NRF + NR - 1 J = J + 1 RWORK( J ) = DBLE( B( JROW, JCOL ) ) 70 CONTINUE 80 CONTINUE OPS = OPS + DOPBL3( 'DGEMM ', NR, NRHS, NR ) CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, $ RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1 ), NR ) J = NR*NRHS*2 DO 100 JCOL = 1, NRHS DO 90 JROW = NRF, NRF + NR - 1 J = J + 1 RWORK( J ) = DIMAG( B( JROW, JCOL ) ) 90 CONTINUE 100 CONTINUE OPS = OPS + DOPBL3( 'DGEMM ', NR, NRHS, NR ) CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, $ RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1+NR*NRHS ), $ NR ) JREAL = 0 JIMAG = NR*NRHS DO 120 JCOL = 1, NRHS DO 110 JROW = NRF, NRF + NR - 1 JREAL = JREAL + 1 JIMAG = JIMAG + 1 BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ), $ RWORK( JIMAG ) ) 110 CONTINUE 120 CONTINUE* 130 CONTINUE** Next copy the rows of B that correspond to unchanged rows* in the bidiagonal matrix to BX.* DO 140 I = 1, ND IC = IWORK( INODE+I-1 ) CALL ZCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX ) 140 CONTINUE** Finally go through the left singular vector matrices of all* the other subproblems bottom-up on the tree.* J = 2**NLVL SQRE = 0* DO 160 LVL = NLVL, 1, -1 LVL2 = 2*LVL - 1** find the first node LF and last node LL on* the current level LVL* IF( LVL.EQ.1 ) THEN LF = 1 LL = 1 ELSE LF = 2**( LVL-1 ) LL = 2*LF - 1 END IF DO 150 I = LF, LL IM1 = I - 1 IC = IWORK( INODE+IM1 ) NL = IWORK( NDIML+IM1 ) NR = IWORK( NDIMR+IM1 ) NLF = IC - NL NRF = IC + 1 J = J - 1 CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX, $ B( NLF, 1 ), LDB, PERM( NLF, LVL ), $ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, $ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ), $ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ), $ Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK, $ INFO ) 150 CONTINUE 160 CONTINUE GO TO 330** ICOMPQ = 1: applying back the right singular vector factors.* 170 CONTINUE** First now go through the right singular vector matrices of all* the tree nodes top-down.* J = 0 DO 190 LVL = 1, NLVL LVL2 = 2*LVL - 1** Find the first node LF and last node LL on* the current level LVL.* IF( LVL.EQ.1 ) THEN LF = 1 LL = 1 ELSE LF = 2**( LVL-1 ) LL = 2*LF - 1 END IF DO 180 I = LL, LF, -1 IM1 = I - 1 IC = IWORK( INODE+IM1 ) NL = IWORK( NDIML+IM1 ) NR = IWORK( NDIMR+IM1 ) NLF = IC - NL NRF = IC + 1 IF( I.EQ.LL ) THEN SQRE = 0 ELSE SQRE = 1 END IF J = J + 1 CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB, $ BX( NLF, 1 ), LDBX, PERM( NLF, LVL ), $ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, $ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ), $ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ), $ Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK, $ INFO ) 180 CONTINUE 190 CONTINUE** The nodes on the bottom level of the tree were solved* by DLASDQ. The corresponding right singular vector* matrices are in explicit form. Apply them back.* NDB1 = ( ND+1 ) / 2 DO 320 I = NDB1, ND I1 = I - 1 IC = IWORK( INODE+I1 ) NL = IWORK( NDIML+I1 ) NR = IWORK( NDIMR+I1 ) NLP1 = NL + 1 IF( I.EQ.ND ) THEN NRP1 = NR ELSE NRP1 = NR + 1 END IF NLF = IC - NL NRF = IC + 1** Since B and BX are complex, the following call to DGEMM is* performed in two steps (real and imaginary parts).** CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )* J = NLP1*NRHS*2 DO 210 JCOL = 1, NRHS DO 200 JROW = NLF, NLF + NLP1 - 1 J = J + 1 RWORK( J ) = DBLE( B( JROW, JCOL ) ) 200 CONTINUE 210 CONTINUE OPS = OPS + DOPBL3( 'DGEMM ', NLP1, NRHS, NLP1 ) CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, $ RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO, RWORK( 1 ), $ NLP1 ) J = NLP1*NRHS*2 DO 230 JCOL = 1, NRHS DO 220 JROW = NLF, NLF + NLP1 - 1 J = J + 1 RWORK( J ) = DIMAG( B( JROW, JCOL ) ) 220 CONTINUE 230 CONTINUE OPS = OPS + DOPBL3( 'DGEMM ', NLP1, NRHS, NLP1 ) CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, $ RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO, $ RWORK( 1+NLP1*NRHS ), NLP1 ) JREAL = 0 JIMAG = NLP1*NRHS DO 250 JCOL = 1, NRHS DO 240 JROW = NLF, NLF + NLP1 - 1 JREAL = JREAL + 1 JIMAG = JIMAG + 1 BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ), $ RWORK( JIMAG ) ) 240 CONTINUE 250 CONTINUE** Since B and BX are complex, the following call to DGEMM is* performed in two steps (real and imaginary parts).** CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )* J = NRP1*NRHS*2 DO 270 JCOL = 1, NRHS DO 260 JROW = NRF, NRF + NRP1 - 1 J = J + 1 RWORK( J ) = DBLE( B( JROW, JCOL ) ) 260 CONTINUE 270 CONTINUE OPS = OPS + DOPBL3( 'DGEMM ', NRP1, NRHS, NRP1 ) CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, $ RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO, RWORK( 1 ), $ NRP1 ) J = NRP1*NRHS*2 DO 290 JCOL = 1, NRHS DO 280 JROW = NRF, NRF + NRP1 - 1 J = J + 1 RWORK( J ) = DIMAG( B( JROW, JCOL ) ) 280 CONTINUE 290 CONTINUE OPS = OPS + DOPBL3( 'DGEMM ', NRP1, NRHS, NRP1 ) CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, $ RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO, $ RWORK( 1+NRP1*NRHS ), NRP1 ) JREAL = 0 JIMAG = NRP1*NRHS DO 310 JCOL = 1, NRHS DO 300 JROW = NRF, NRF + NRP1 - 1 JREAL = JREAL + 1 JIMAG = JIMAG + 1 BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ), $ RWORK( JIMAG ) ) 300 CONTINUE 310 CONTINUE* 320 CONTINUE* 330 CONTINUE* RETURN** End of ZLALSA* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -