📄 clalsa.f
字号:
SUBROUTINE CLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, $ LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, $ GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, $ IWORK, INFO )** -- LAPACK routine (instrumented to count ops, version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* June 30, 1999** .. Scalar Arguments .. INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, $ SMLSIZ* ..* .. Array Arguments .. INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), $ K( * ), PERM( LDGCOL, * ) REAL C( * ), DIFL( LDU, * ), DIFR( LDU, * ), $ GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ), $ S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * ) COMPLEX B( LDB, * ), BX( LDBX, * )* ..* .. Common block to return operation count .. COMMON / LATIME / OPS, ITCNT* ..* .. Scalars in Common .. REAL ITCNT, OPS* ..** Purpose* =======** CLALSA is an itermediate step in solving the least squares problem* by computing the SVD of the coefficient matrix in compact form (The* singular vectors are computed as products of simple orthorgonal* matrices.).** If ICOMPQ = 0, CLALSA applies the inverse of the left singular vector* matrix of an upper bidiagonal matrix to the right hand side; and if* ICOMPQ = 1, CLALSA applies the right singular vector matrix to the* right hand side. The singular vector matrices were generated in* compact form by CLALSA.** Arguments* =========** ICOMPQ (input) INTEGER* Specifies whether the left or the right singular vector* matrix is involved.* = 0: Left singular vector matrix* = 1: Right singular vector matrix** SMLSIZ (input) INTEGER* The maximum size of the subproblems at the bottom of the* computation tree.** N (input) INTEGER* The row and column dimensions of the upper bidiagonal matrix.** NRHS (input) INTEGER* The number of columns of B and BX. NRHS must be at least 1.** B (input) COMPLEX array, dimension ( LDB, NRHS )* On input, B contains the right hand sides of the least* squares problem in rows 1 through M. On output, B contains* the solution X in rows 1 through N.** LDB (input) INTEGER* The leading dimension of B in the calling subprogram.* LDB must be at least max(1,MAX( M, N ) ).** BX (output) COMPLEX array, dimension ( LDBX, NRHS )* On exit, the result of applying the left or right singular* vector matrix to B.** LDBX (input) INTEGER* The leading dimension of BX.** U (input) REAL array, dimension ( LDU, SMLSIZ ).* On entry, U contains the left singular vector matrices of all* subproblems at the bottom level.** LDU (input) INTEGER, LDU = > N.* The leading dimension of arrays U, VT, DIFL, DIFR,* POLES, GIVNUM, and Z.** VT (input) REAL array, dimension ( LDU, SMLSIZ+1 ).* On entry, VT' contains the right singular vector matrices of* all subproblems at the bottom level.** K (input) INTEGER array, dimension ( N ).** DIFL (input) REAL array, dimension ( LDU, NLVL ).* where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.** DIFR (input) REAL array, dimension ( LDU, 2 * NLVL ).* On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record* distances between singular values on the I-th level and* singular values on the (I -1)-th level, and DIFR(*, 2 * I)* record the normalizing factors of the right singular vectors* matrices of subproblems on I-th level.** Z (input) REAL array, dimension ( LDU, NLVL ).* On entry, Z(1, I) contains the components of the deflation-* adjusted updating row vector for subproblems on the I-th* level.** POLES (input) REAL array, dimension ( LDU, 2 * NLVL ).* On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old* singular values involved in the secular equations on the I-th* level.** GIVPTR (input) INTEGER array, dimension ( N ).* On entry, GIVPTR( I ) records the number of Givens* rotations performed on the I-th problem on the computation* tree.** GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).* On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the* locations of Givens rotations performed on the I-th level on* the computation tree.** LDGCOL (input) INTEGER, LDGCOL = > N.* The leading dimension of arrays GIVCOL and PERM.** PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).* On entry, PERM(*, I) records permutations done on the I-th* level of the computation tree.** GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ).* On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-* values of Givens rotations performed on the I-th level on the* computation tree.** C (input) REAL array, dimension ( N ).* On entry, if the I-th subproblem is not square,* C( I ) contains the C-value of a Givens rotation related to* the right null space of the I-th subproblem.** S (input) REAL array, dimension ( N ).* On entry, if the I-th subproblem is not square,* S( I ) contains the S-value of a Givens rotation related to* the right null space of the I-th subproblem.** RWORK (workspace) REAL array, dimension at least* max ( N, (SMLSZ+1)*NRHS*3 ).** IWORK (workspace) INTEGER array.* The dimension must be at least 3 * N** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.** =====================================================================** .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )* ..* .. Local Scalars .. INTEGER I, I1, IC, IM1, INODE, J, JCOL, JIMAG, JREAL, $ JROW, LF, LL, LVL, LVL2, ND, NDB1, NDIML, $ NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQRE* ..* .. External Subroutines .. EXTERNAL CCOPY, CLALS0, SGEMM, SLASDT, $ XERBLA* ..* .. External Functions .. REAL SOPBL3 EXTERNAL SOPBL3* ..* .. Intrinsic Functions .. INTRINSIC CMPLX, REAL, AIMAG* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0* IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN INFO = -1 ELSE IF( SMLSIZ.LT.3 ) THEN INFO = -2 ELSE IF( N.LT.SMLSIZ ) THEN INFO = -3 ELSE IF( NRHS.LT.1 ) THEN INFO = -4 ELSE IF( LDB.LT.N ) THEN INFO = -6 ELSE IF( LDBX.LT.N ) THEN INFO = -8 ELSE IF( LDU.LT.N ) THEN INFO = -10 ELSE IF( LDGCOL.LT.N ) THEN INFO = -19 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLALSA', -INFO ) RETURN END IF** Book-keeping and setting up the computation tree.* INODE = 1 NDIML = INODE + N NDIMR = NDIML + N* CALL SLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ), $ IWORK( NDIMR ), SMLSIZ )** The following code applies back the left singular vector factors.* For applying back the right singular vector factors, go to 170.* IF( ICOMPQ.EQ.1 ) THEN GO TO 170 END IF** The nodes on the bottom level of the tree were solved* by SLASDQ. The corresponding left and right singular vector* matrices are in explicit form. First apply back the left* singular vector matrices.* NDB1 = ( ND+1 ) / 2 DO 130 I = NDB1, ND** IC : center row of each node* NL : number of rows of left subproblem* NR : number of rows of right subproblem* NLF: starting row of the left subproblem* NRF: starting row of the right subproblem* I1 = I - 1 IC = IWORK( INODE+I1 ) NL = IWORK( NDIML+I1 ) NR = IWORK( NDIMR+I1 ) NLF = IC - NL NRF = IC + 1** Since B and BX are complex, the following call to SGEMM* is performed in two steps (real and imaginary parts).** CALL SGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )* J = NL*NRHS*2 DO 20 JCOL = 1, NRHS DO 10 JROW = NLF, NLF + NL - 1 J = J + 1 RWORK( J ) = REAL( B( JROW, JCOL ) ) 10 CONTINUE 20 CONTINUE OPS = OPS + SOPBL3( 'SGEMM ', NL, NRHS, NL ) CALL SGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, $ RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1 ), NL ) J = NL*NRHS*2
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -