⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 iradon.m

📁 有关matlab的电子书籍有一定的帮助希望有用
💻 M
字号:
function [img,H] = iradon(varargin)
%IRADON Compute inverse Radon transform.
%   I = iradon(R,THETA) reconstructs the image I from projection 
%   data in the 2-D array R.  The columns of R are parallel beam 
%   projection data.  IRADON assumes that the center of rotation
%   is the center point of the projections, which is defined as
%   ceil(size(R,1)/2).
%
%   THETA describes the angles (in degrees) at which the projections    
%   were taken.  It can be either a vector containing the angles or 
%   a scalar specifying D_theta, the incremental angle between 
%   projections. If THETA is a vector, it must contain angles with 
%   equal spacing between them.  If THETA is a scalar specifying   
%   D_theta, the projections are taken at angles THETA = m * D_theta; 
%   m = 0,1,2,...,size(R,2)-1.  If the input is the empty matrix
%   ([]), D_theta defaults to 180/size(R,2).   
%
%   IRADON uses the filtered backprojection algorithm to perform
%   the inverse Radon transform.  The filter is designed directly 
%   in the frequency domain and then multiplied by the FFT of the 
%   projections.  The projections are zero-padded to a power of 2 
%   before filtering to prevent spatial domain aliasing and to 
%   speed up the FFT.
%
%   I = IRADON(R,THETA,INTERP,FILTER,D,N) specifies parameters 
%   to use in the inverse Radon transform.  You can specify
%   any combination of the last four arguments.  IRADON uses 
%   default values for any of these arguments that you omit.
%
%   INTERP specifies the type of interpolation to use in the   
%   backprojection.  The available options are listed in order
%   of increasing accuracy and computational complexity:
%
%      'nearest' - nearest neighbor interpolation 
%      'linear'  - linear interpolation (default)
%      'spline'  - spline interpolation
%
%   FILTER specifies the filter to use for frequency domain filtering.  
%   FILTER is a string that specifies any of the following standard 
%   filters:
% 
%   'Ram-Lak'     The cropped Ram-Lak or ramp filter (default).  The    
%                 frequency response of this filter is |f|.  Because 
%                 this filter is sensitive to noise in the projections, 
%                 one of the filters listed below may be preferable.   
%                 These filters multiply the Ram-Lak filter by a
%                 window that de-emphasizes high frequencies.
%   'Shepp-Logan'       The Shepp-Logan filter multiplies the Ram-Lak
%                 filter by a sinc function.
%   'Cosine'       The cosine filter multiplies the Ram-Lak filter 
%                 by a cosine function.
%   'Hamming'      The Hamming filter multiplies the Ram-Lak filter 
%                 by a Hamming window.
%   'Hann'            The Hann filter multiplies the Ram-Lak filter by 
%                 a Hann window.
%   
%   D is a scalar in the range (0,1] that modifies the filter by 
%   rescaling its frequency axis.  The default is 1.  If D is less 
%   than 1, the filter is compressed to fit into the frequency range  
%   [0,D], in normalized frequencies; all frequencies above D are set  
%   to 0.
% 
%   N is a scalar that specifies the number of rows and columns in the 
%   reconstructed image.  If N is not specified, the size is determined   
%   from the length of the projections:
%
%       N = 2*floor(size(R,1)/(2*sqrt(2)))
%
%   If you specify N, IRADON reconstructs a smaller or larger portion of 
%   the image, but does not change the scaling of the data.  
% 
%   If the projections were calculated with the RADON function, the 
%   reconstructed image may not be the same size as the original 
%   image.  
%
%   [I,H] = iradon(...) returns the frequency response of the filter
%   in the vector H.
%
%   Class Support
%   -------------
%   All input arguments must be of class double.  The output arguments are
%   of class double.
%
%   Example
%   -------
%       P = phantom(128);
%       R = radon(P,0:179);
%       I = iradon(R,0:179,'nearest','Hann');
%       imshow(P); figure; imshow(I);
%
%   See also RADON, PHANTOM.

%   Chris Griffin 6-5-97
%   Copyright 1993-1998 The MathWorks, Inc.  All Rights Reserved.
%   $Revision: 1.4 $  $Date: 1997/11/24 16:18:24 $

%   References: 
%      A. C. Kak, Malcolm Slaney, "Principles of Computerized Tomographic
%      Imaging", IEEE Press 1988.


[p,theta,filter,d,interp,N] = parse_inputs(varargin{:});

% Design the filter
len=size(p,1);   
H = designFilter(filter, len, d);
p(length(H),1)=0;  % Zero pad projections 

% In the code below, I continuously reuse the array p so as to
% save memory.  This makes it harder to read, but the comments
% explain what is going on.

p = fft(p);    % p holds fft of projections

for i = 1:size(p,2)
   p(:,i) = p(:,i).*H; % frequency domain filtering
end

p = real(ifft(p));     % p is the filtered projections
p(len+1:end,:) = [];   % Truncate the filtered projections
img = zeros(N);        % Allocate memory for the image.

% Define the x & y axes for the reconstructed image so that the origin
% (center) is in the spot which RADON would choose.
xax = (1:N)-ceil(N/2);
x = repmat(xax, N, 1);    % x coordinates, the y coordinates are rot90(x)
y = rot90(x);

costheta = cos(theta);
sintheta = sin(theta);
ctrIdx = ceil(len/2);     % index of the center of the projections

% Zero pad the projections to size 1+2*ceil(N/sqrt(2)) if this
% quantity is greater than the length of the projections
imgDiag = 2*ceil(N/sqrt(2))+1;  % largest distance through image.
if size(p,1) < imgDiag 
   rz = imgDiag - size(p,1);  % how many rows of zeros
   p = [zeros(ceil(rz/2),size(p,2)); p; zeros(floor(rz/2),size(p,2))];
   ctrIdx = ctrIdx+ceil(rz/2);
end

% Backprojection - vectorized in (x,y), looping over theta
if strcmp(interp, 'nearest neighbor')
   for i=1:length(theta)   
      proj = p(:,i);
      t = round(x*costheta(i) + y*sintheta(i));
      img = img + proj(t+ctrIdx);
   end
elseif strcmp(interp, 'linear')
   for i=1:length(theta)  
      proj = p(:,i);
      t = x.*costheta(i) + y.*sintheta(i); 
      a = floor(t);  
      img = img + (t-a).*proj(a+1+ctrIdx) + (a+1-t).*proj(a+ctrIdx);
   end
elseif strcmp(interp, 'spline')
   for i=1:length(theta)
      proj = p(:,i);
      taxis = (1:size(p,1)) - ctrIdx;
      t = x.*costheta(i) + y.*sintheta(i);
      projContrib = interp1(taxis,proj,t(:),'*spline');
      img = img + reshape(projContrib,N,N);
   end
end

img = img*pi/(2*length(theta));




%%%
%%%  Sub-Function:  designFilter
%%%

function filt = designFilter(filter, len, d)
% Returns the Fourier Transform of the filter which will be 
% used to filter the projections
%
% INPUT ARGS:   filter - either the string specifying the filter 
%               len    - the length of the projections
%               d      - the fraction of frequencies below the nyquist
%                        which we want to pass
%
% OUTPUT ARGS:  filt   - the filter to use on the projections


order = max(64,2^nextpow2(2*len));

% First create a ramp filter - go up to the next highest
% power of 2.

filt = 2*( 0:(order/2) )./order;
w = 2*pi*(0:size(filt,2)-1)/order;   % frequency axis up to Nyquist 

switch filter
case 'ram-lak'
   % Do nothing
case 'shepp-logan'
   % be careful not to divide by 0:
   filt(2:end) = filt(2:end) .* (sin(w(2:end)/(2*d))./(w(2:end)/(2*d)));
case 'cosine'
   filt(2:end) = filt(2:end) .* cos(w(2:end)/(2*d));
case 'hamming'  
   filt(2:end) = filt(2:end) .* (.54 + .46 * cos(w(2:end)/d));
case 'hann'
   filt(2:end) = filt(2:end) .*(1+cos(w(2:end)./d)) / 2;
otherwise
   error('Invalid filter selected.');
end

filt(w>pi*d) = 0;                      % Crop the frequency response
filt = [filt' ; filt(end-1:-1:2)'];    % Symmetry of the filter


%%%
%%%  Sub-Function:  parse_inputs
%%%

function [p,theta,filter,d,interp,N] = parse_inputs(varargin);
%  Parse the input arguments and retun things
%
%  Inputs:   varargin -   Cell array containing all of the actual inputs
%
%  Outputs:  p        -   Projection data
%            theta    -   the angles at which the projections were taken
%            filter   -   string specifying filter or the actual filter
%            d        -   a scalar specifying normalized freq. at which to crop 
%                         the frequency response of the filter
%            interp   -   the type of interpolation to use
%            N        -   The size of the reconstructed image

if nargin<2
   error('Invalid input arguments.');
end

p = varargin{1};
theta = pi*varargin{2}/180;

% Default values
N = 0;                 % Size of the reconstructed image
d = 1;                 % Defaults to no cropping of filters frequency response
filter = 'ram-lak';    % The ramp filter is the default
interp = 'linear';     % default interpolation is linear
string_args = {'nearest neighbor', 'linear', 'spline', ...
      'ram-lak','shepp-logan','cosine','hamming', 'hann'};

for i=3:nargin
   arg = varargin{i};
   if ischar(arg)
      idx = strmatch(lower(arg),string_args);
      if isempty(idx)
         error(['Unknown input string: ' arg '.']);
      elseif prod(size(idx)) > 1
         error(['Ambiguous input string: ' arg '.']);
      elseif prod(size(idx)) == 1
         if idx <= 3   % It is the interpolatio
            interp = string_args{idx};
         elseif (idx > 3) & (idx <= 8)
            filter = string_args{idx};
         end
      end
   elseif prod(size(arg))==1
      if arg <=1
         d = arg;
      else
         N = arg;
      end
   else
      error('Invalid input parameters');
   end
end

% If the user didn't specify the size of the reconstruction, so 
% deduce it from the length of projections
if N==0    
   N = 2*floor( size(p,1)/(2*sqrt(2)) );  % This doesn't always jive with RADON
end

% for empty theta, choose an intelligent default delta-theta
if isempty(theta)
   theta = pi / size(p,2);
end

% If the user passed in delta-theta, build the vector of theta values
if prod(size(theta))==1
   theta = (0:(size(p,2)-1))* theta;
end

if length(theta) ~= size(p,2)
   error('THETA does not match the number of projections.');
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -