📄 edge.m
字号:
function [eout,thresh] = edge(varargin)
%EDGE Find edges in intensity image.
% EDGE takes an intensity image I as its input, and returns a binary image
% BW of the same size as I, with 1's where the function finds edges in I
% and 0's elsewhere.
%
% EDGE supports six different edge-finding methods:
%
% The Sobel method finds edges using the Sobel approximation to the
% derivative. It returns edges at those points where the gradient of
% I is maximum.
%
% The Prewitt method finds edges using the Prewitt approximation to
% the derivative. It returns edges at those points where the gradient
% of I is maximum.
%
% The Roberts method finds edges using the Roberts approximation to
% the derivative. It returns edges at those points where the gradient
% of I is maximum.
%
% The Laplacian of Gaussian method finds edges by looking for zero
% crossings after filtering I with a Laplacian of Gaussian filter.
%
% The zero-cross method finds edges by looking for zero crossings
% after filtering I with a filter you specify.
%
% The Canny method finds edges by looking for local maxima of the
% gradient of I. The gradient is calculated using the derivative of a
% Gaussian filter. The method uses two thresholds, to detect strong
% and weak edges, and includes the weak edges in the output only if
% they are connected to strong edges. This method is therefore less
% likely than the others to be "fooled" by noise, and more likely to
% detect true weak edges.
%
% The parameters you can supply differ depending on the method you
% specify. If you do not specify a method, EDGE uses the Sobel method.
%
% Sobel Method
% ------------
% BW = EDGE(I,'sobel') specifies the Sobel method.
%
% BW = EDGE(I,'sobel',THRESH) specifies the sensitivity threshold for
% the Sobel method. EDGE ignores all edges that are not stronger than
% THRESH. If you do not specify THRESH, or if THRESH is empty ([]),
% EDGE chooses the value automatically.
%
% BW = EDGE(I,'sobel',THRESH,DIRECTION) specifies directionality for the
% Sobel method. DIRECTION is a string specifying whether to look for
% 'horizontal' or 'vertical' edges, or 'both' (the default).
%
% [BW,thresh] = EDGE(I,'sobel',...) returns the threshold value.
%
% Prewitt Method
% --------------
% BW = EDGE(I,'prewitt') specifies the Prewitt method.
%
% BW = EDGE(I,'prewitt',THRESH) specifies the sensitivity threshold for
% the Prewitt method. EDGE ignores all edges that are not stronger than
% THRESH. If you do not specify THRESH, or if THRESH is empty ([]),
% EDGE chooses the value automatically.
%
% BW = EDGE(I,'prewitt',THRESH,DIRECTION) specifies directionality for
% the Prewitt method. DIRECTION is a string specifying whether to look
% for 'horizontal' or 'vertical' edges, or 'both' (the default).
%
% [BW,thresh] = EDGE(I,'prewitt',...) returns the threshold value.
%
% Roberts Method
% --------------
% BW = EDGE(I,'roberts') specifies the Roberts method.
%
% BW = EDGE(I,'roberts',THRESH) specifies the sensitivity threshold for
% the Roberts method. EDGE ignores all edges that are not stronger than
% THRESH. If you do not specify THRESH, or if THRESH is empty ([]),
% EDGE chooses the value automatically.
%
% [BW,thresh] = EDGE(I,'roberts',...) returns the threshold value.
%
% Laplacian of Gaussian Method
% ----------------------------
% BW = EDGE(I,'log') specifies the Laplacian of Gaussian method.
%
% BW = EDGE(I,'log',THRESH) specifies the sensitivity threshold for the
% Laplacian of Gaussian method. EDGE ignores all edges that are not
% stronger than THRESH. If you do not specify THRESH, or if THRESH is
% empty ([]), EDGE chooses the value automatically.
%
% BW = EDGE(I,'log',THRESH,SIGMA) specifies the Laplacian of Gaussian
% method, using SIGMA as the standard deviation of the LoG filter. The
% default SIGMA is 2; the size of the filter is N-by-N, where
% N=CEIL(SIGMA*3)*2+1.
%
% [BW,thresh] = EDGE(I,'log',...) returns the threshold value.
%
% Zero-cross Method
% -----------------
% BW = EDGE(I,'zerocross',THRESH,H) specifies the zero-cross method,
% using the specified filter H. If THRESH is empty ([]), EDGE chooses
% the sensitivity threshold automatically.
%
% [BW,THRESH] = EDGE(I,'zerocross',...) returns the threshold value.
%
% Canny Method
% ----------------------------
% BW = EDGE(I,'canny') specifies the Canny method.
%
% BW = EDGE(I,'canny',THRESH) specifies sensitivity thresholds for the
% Canny method. THRESH is a two-element vector in which the first element
% is the low threshold, and the second element is the high threshold. If
% you specify a scalar for THRESH, this value is used for the high
% threshold and 0.4*THRESH is used for the low threshold. If you do not
% specify THRESH, or if THRESH is empty ([]), EDGE chooses low and high
% values automatically.
%
% BW = EDGE(I,'canny',THRESH,SIGMA) specifies the Canny method, using
% SIGMA as the standard deviation of the Gaussian filter. The default
% SIGMA is 1; the size of the filter is chosen automatically, based
% on SIGMA.
%
% [BW,thresh] = EDGE(I,'canny',...) returns the threshold values as a
% two-element vector.
%
% Class Support
% -------------
% I can be of class uint8 or double. BW is of class uint8.
%
% Remarks
% -------
% For the 'log' and 'zerocross' methods, if you specify a
% threshold of 0, the output image has closed contours, because
% it includes all of the zero crossings in the input image.
%
% Example
% -------
% Find the edges of the rice.tif image using the Prewitt and Canny
% methods:
%
% I = imread('rice.tif');
% BW1 = edge(I,'prewitt');
% BW2 = edge(I,'canny');
% imshow(BW1)
% figure, imshow(BW2)
%
% See also FSPECIAL.
% Grandfathered syntax
% --------------------
% BW = EDGE(... ,K) allows the specification of a directionality
% factor, K. This only works for the 'sobel', 'prewitt', and
% 'roberts' methods. K must be a 1-by-2 vector, K = [kx ky].
% For Sobel and Prewitt, K=[1 0] looks for vertical edges,
% K=[0 1] looks for horizontal edges, and K=[1 1], the default,
% looks for non-directional edges. For the Roberts edge detector,
% K=[1 0] looks for 135 degree diagonal edges, K=[0 1] looks
% for 45 degree diagonal edges, and K=[1 1], the default, looks
% for non-directional edges.
%
% Clay M. Thompson 10-8-92
% Revised by Chris Griffin, 1996,1997
% Copyright 1993-1998 The MathWorks, Inc. All Rights Reserved.
% $Revision: 5.12 $ $Date: 1997/11/24 15:34:36 $
[a,method,thresh,sigma,H,kx,ky] = parse_inputs(varargin{:});
% Transform to a double precision intensity image
if isa(a, 'uint8')
a = im2double(a);
end
m = size(a,1);
n = size(a,2);
rr = 2:m-1; cc=2:n-1;
% The output edge map:
e = repmat(logical(uint8(0)), m, n);
if strcmp(method,'canny')
% Magic numbers
GaussianDieOff = .0001;
PercentOfPixelsNotEdges = .7; % Used for selecting thresholds
ThresholdRatio = .4; % Low thresh is this fraction of the high.
% Design the filters - a gaussian and its derivative
pw = 1:30; % possible widths
ssq = sigma*sigma;
width = max(find(exp(-(pw.*pw)/(2*sigma*sigma))>GaussianDieOff));
if isempty(width)
width = 1; % the user entered a really small sigma
end
t = (-width:width);
len = 2*width+1;
t3 = [t-.5; t; t+.5]; % We will average values at t-.5, t, t+.5
gau = sum(exp(-(t3.*t3)/(2*ssq))).'/(6*pi*ssq); % the gaussian 1-d filter
dgau = (-t.* exp(-(t.*t)/(2*ssq))/ ssq).'; % derivative of a gaussian
% Convolve the filters with the image in each direction
% The canny edge detector first requires convolutions with
% the gaussian, and then with the derivitave of a gauusian.
% I convolve the filters first and then make a call to conv2
% to do the convolution down each column.
ra = size(a,1);
ca = size(a,2);
ay = 255*a; ax = 255*a';
h = conv(gau,dgau);
ax = conv2(ax, h, 'same').';
ay = conv2(ay, h, 'same');
mag = sqrt((ax.*ax) + (ay.*ay));
magmax = max(mag(:));
if magmax>0
mag = mag / magmax; % normalize
end
% Select the thresholds
if isempty(thresh)
[counts,x]=imhist(mag, 64);
highThresh = min(find(cumsum(counts) > PercentOfPixelsNotEdges*m*n)) / 64;
lowThresh = ThresholdRatio*highThresh;
thresh = [lowThresh highThresh];
elseif length(thresh)==1
highThresh = thresh;
if thresh>=1
error('The threshold must be less than 1.');
end
lowThresh = ThresholdRatio*thresh;
thresh = [lowThresh highThresh];
elseif length(thresh)==2
lowThresh = thresh(1);
highThresh = thresh(2);
if (lowThresh >= highThresh) | (highThresh >= 1)
error('Thresh must be [low high], where low < high < 1.');
end
end
% The next step is to do the non-maximum supression.
% We will accrue indices which specify ON pixels in strong edgemap
% The array e will become the weak edge map.
idxStrong = [];
for dir = 1:4
idxLocalMax = cannyFindLocalMaxima(dir,ax,ay,mag);
idxWeak = idxLocalMax(mag(idxLocalMax) > lowThresh);
e(idxWeak)=1;
idxStrong = [idxStrong; idxWeak(mag(idxWeak) > highThresh)];
end
rstrong = rem(idxStrong-1, m)+1;
cstrong = floor((idxStrong-1)/m)+1;
e = bwselect(e, cstrong, rstrong, 8);
e = bwmorph(e, 'thin', 1); % Thin double (or triple) pixel wide contours
elseif any(strcmp(method, {'log','marr-hildreth','zerocross'}))
% We don't use image blocks here
if isempty(H),
fsize = ceil(sigma*3) * 2 + 1; % choose an odd fsize > 6*sigma;
op = fspecial('log',fsize,sigma);
else
op = H;
end
op = op - sum(op(:))/prod(size(op)); % make the op to sum to zero
b = filter2(op,a);
if isempty(thresh)
thresh = .75*mean2(abs(b(rr,cc)));
end
% Look for the zero crossings: +-, -+ and their transposes
% We arbitrarily choose the edge to be the negative point
[rx,cx] = find( b(rr,cc) < 0 & b(rr,cc+1) > 0 ...
& abs( b(rr,cc)-b(rr,cc+1) ) > thresh ); % [- +]
e((rx+1) + cx*m) = 1;
[rx,cx] = find( b(rr,cc-1) > 0 & b(rr,cc) < 0 ...
& abs( b(rr,cc-1)-b(rr,cc) ) > thresh ); % [+ -]
e((rx+1) + cx*m) = 1;
[rx,cx] = find( b(rr,cc) < 0 & b(rr+1,cc) > 0 ...
& abs( b(rr,cc)-b(rr+1,cc) ) > thresh); % [- +]'
e((rx+1) + cx*m) = 1;
[rx,cx] = find( b(rr-1,cc) > 0 & b(rr,cc) < 0 ...
& abs( b(rr-1,cc)-b(rr,cc) ) > thresh); % [+ -]'
e((rx+1) + cx*m) = 1;
% Most likely this covers all of the cases. Just check to see if there
% are any points where the LoG was precisely zero:
[rz,cz] = find( b(rr,cc)==0 );
if ~isempty(rz)
% Look for the zero crossings: +0-, -0+ and their transposes
% The edge lies on the Zero point
zero = (rz+1) + cz*m; % Linear index for zero points
zz = find(b(zero-1) < 0 & b(zero+1) > 0 ...
& abs( b(zero-1)-b(zero+1) ) > 2*thresh); % [- 0 +]'
e(zero(zz)) = 1;
zz = find(b(zero-1) > 0 & b(zero+1) < 0 ...
& abs( b(zero-1)-b(zero+1) ) > 2*thresh); % [+ 0 -]'
e(zero(zz)) = 1;
zz = find(b(zero-m) < 0 & b(zero+m) > 0 ...
& abs( b(zero-m)-b(zero+m) ) > 2*thresh); % [- 0 +]
e(zero(zz)) = 1;
zz = find(b(zero-m) > 0 & b(zero+m) < 0 ...
& abs( b(zero-m)-b(zero+m) ) > 2*thresh); % [+ 0 -]
e(zero(zz)) = 1;
end
else % one of the easy methods (roberts,sobel,prewitt)
% Determine edges in blocks for easy methods
nr = length(rr); nc = length(cc);
blk = bestblk([nr nc]);
nblks = floor([nr nc]./blk); nrem = [nr nc] - nblks.*blk;
mblocks = nblks(1); nblocks = nblks(2);
mb = blk(1); nb = blk(2);
if strcmp(method,'sobel')
op = [-1 -2 -1;0 0 0;1 2 1]/8; % Sobel approximation to derivative
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -