📄 butter.m
字号:
function [num, den, z, p] = butter(n, Wn, varargin)
%BUTTER Butterworth digital and analog filter design.
% [B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital
% Butterworth filter and returns the filter coefficients in length
% N+1 vectors B (numerator) and A (denominator). The coefficients
% are listed in descending powers of z. The cut-off frequency
% Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to
% half the sample rate.
%
% If Wn is a two-element vector, Wn = [W1 W2], BUTTER returns an
% order 2N bandpass filter with passband W1 < W < W2.
% [B,A] = BUTTER(N,Wn,'high') designs a highpass filter.
% [B,A] = BUTTER(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2].
%
% When used with three left-hand arguments, as in
% [Z,P,K] = BUTTER(...), the zeros and poles are returned in
% length N column vectors Z and P, and the gain in scalar K.
%
% When used with four left-hand arguments, as in
% [A,B,C,D] = BUTTER(...), state-space matrices are returned.
%
% BUTTER(N,Wn,'s'), BUTTER(N,Wn,'high','s') and BUTTER(N,Wn,'stop','s')
% design analog Butterworth filters. In this case, Wn can be bigger
% than 1.0.
%
% See also BUTTORD, BESSELF, CHEBY1, CHEBY2, ELLIP, FREQZ, FILTER.
% Author(s): J.N. Little, 1-14-87
% J.N. Little, 1-14-88, revised
% L. Shure, 4-29-88, revised
% T. Krauss, 3-24-93, revised
% Copyright (c) 1988-98 by The MathWorks, Inc.
% $Revision: 1.22 $ $Date: 1997/12/02 18:36:25 $
% References:
% [1] T. W. Parks and C. S. Burrus, Digital Filter Design,
% John Wiley & Sons, 1987, chapter 7, section 7.3.3.
[btype,analog,errStr] = iirchk(Wn,varargin{:});
error(errStr)
if n>500
error('Filter order too large.')
end
% step 1: get analog, pre-warped frequencies
if ~analog,
fs = 2;
u = 2*fs*tan(pi*Wn/fs);
else
u = Wn;
end
Bw=[];
% step 2: convert to low-pass prototype estimate
if btype == 1 % lowpass
Wn = u;
elseif btype == 2 % bandpass
Bw = u(2) - u(1);
Wn = sqrt(u(1)*u(2)); % center frequency
elseif btype == 3 % highpass
Wn = u;
elseif btype == 4 % bandstop
Bw = u(2) - u(1);
Wn = sqrt(u(1)*u(2)); % center frequency
end
% step 3: Get N-th order Butterworth analog lowpass prototype
[z,p,k] = buttap(n);
% Transform to state-space
[a,b,c,d] = zp2ss(z,p,k);
% step 4: Transform to lowpass, bandpass, highpass, or bandstop of desired Wn
if btype == 1 % Lowpass
[a,b,c,d] = lp2lp(a,b,c,d,Wn);
elseif btype == 2 % Bandpass
[a,b,c,d] = lp2bp(a,b,c,d,Wn,Bw);
elseif btype == 3 % Highpass
[a,b,c,d] = lp2hp(a,b,c,d,Wn);
elseif btype == 4 % Bandstop
[a,b,c,d] = lp2bs(a,b,c,d,Wn,Bw);
end
% step 5: Use Bilinear transformation to find discrete equivalent:
if ~analog,
[a,b,c,d] = bilinear(a,b,c,d,fs);
end
if nargout == 4
num = a;
den = b;
z = c;
p = d;
else % nargout <= 3
% Transform to zero-pole-gain and polynomial forms:
if nargout == 3
[z,p,k] = ss2zp(a,b,c,d,1);
z = buttzeros(btype,n,Wn,Bw,analog);
num = z;
den = p;
z = k;
else % nargout <= 2
den = poly(a);
num = buttnum(btype,n,Wn,Bw,analog,den);
% num = poly(a-b*c)+(d-1)*den;
end
end
%---------------------------------
function b = buttnum(btype,n,Wn,Bw,analog,den)
% This internal function returns more exact numerator vectors
% for the num/den case.
% Wn input is two element band edge vector
if analog
switch btype
case 1 % lowpass
b = [zeros(1,n) n^(-n)];
b = real( b*polyval(den,-j*0)/polyval(b,-j*0) );
case 2 % bandpass
b = [zeros(1,n) Bw^n zeros(1,n)];
b = real( b*polyval(den,-j*Wn)/polyval(b,-j*Wn) );
case 3 % highpass
b = [1 zeros(1,n)];
b = real( b*den(1)/b(1) );
case 4 % bandstop
r = j*Wn*((-1).^(0:2*n-1)');
b = poly(r);
b = real( b*polyval(den,-j*0)/polyval(b,-j*0) );
end
else
Wn = 2*atan2(Wn,4);
switch btype
case 1 % lowpass
r = -ones(n,1);
w = 0;
case 2 % bandpass
r = [ones(n,1); -ones(n,1)];
w = Wn;
case 3 % highpass
r = ones(n,1);
w = pi;
case 4 % bandstop
r = exp(j*Wn*( (-1).^(0:2*n-1)' ));
w = 0;
end
b = poly(r);
% now normalize so |H(w)| == 1:
kern = exp(-j*w*(0:length(b)-1));
b = real(b*(kern*den(:))/(kern*b(:)));
end
function z = buttzeros(btype,n,Wn,Bw,analog)
% This internal function returns more exact zeros.
% Wn input is two element band edge vector
if analog
% for lowpass and bandpass, don't include zeros at +Inf or -Inf
switch btype
case 1 % lowpass
z = zeros(0,1);
case 2 % bandpass
z = zeros(n,1);
case 3 % highpass
z = zeros(n,1);
case 4 % bandstop
z = j*Wn*((-1).^(0:2*n-1)');
end
else
Wn = 2*atan2(Wn,4);
switch btype
case 1 % lowpass
z = -ones(n,1);
case 2 % bandpass
z = [ones(n,1); -ones(n,1)];
case 3 % highpass
z = ones(n,1);
case 4 % bandstop
z = exp(j*Wn*( (-1).^(0:2*n-1)' ));
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -