⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 residuez.m

📁 有关matlab的电子书籍有一定的帮助希望有用
💻 M
字号:
function [ r, p, k ] = residuez( b, a, t )
%RESIDUEZ Z-transform partial-fraction expansion.
%   [R,P,K] = RESIDUEZ(B,A) finds the residues, poles and direct terms 
%   of the partial-fraction expansion of B(z)/A(z),
%
%      B(z)       r(1)               r(n)
%      ---- = ------------ +...  ------------ + k(1) + k(2)z^(-1) ...
%      A(z)   1-p(1)z^(-1)       1-p(n)z^(-1)
%
%   B and A are the numerator and denominator polynomial coefficients,
%   respectively, in ascending powers of z^(-1).  R and P are column
%   vectors containing the residues and poles, respectively.  K contains
%   the direct terms in a row vector.  The number of poles is
%      n = length(A)-1 = length(R) = length(P)
%   The direct term coefficient vector is empty if length(B) < length(A);
%   otherwise,
%      length(K) = length(B)-length(A)+1
%
%   If P(j) = ... = P(j+m-1) is a pole of multiplicity m, then the
%   expansion includes terms of the form
%           R(j)              R(j+1)                      R(j+m-1)
%      -------------- + ------------------   + ... + ------------------
%      1 - P(j)z^(-1)   (1 - P(j)z^(-1))^2           (1 - P(j)z^(-1))^m
%
%   [B,A] = RESIDUEZ(R,P,K) converts the partial-fraction expansion back 
%   to B/A form.
%
%   see also RESIDUE, PRONY

%   Author(s): J. McClellan, 10-24-90
%   Modified: T. Bryan, 10-22-97
%   Copyright (c) 1988-98 by The MathWorks, Inc.
%    	$Revision: 1.14 $  $Date: 1997/12/02 18:37:10 $

%   References:
%     [1] A.V. Oppenheim and R.W. Schafer, Discrete-Time
%         Signal Processing, Prentice-Hall, 1989, pp. 166-170.

mpoles_tol = 0.001;    %--- 0.1 percent
avg_roots = 0;         %--- FALSE, turns off averaging
if( nargin == 2 )
%================= convert B/A to partial fractions =========
  if( a(1) == 0 )
     error('First coefficient in A vector must be non-zero.')
  end
  b = b(:).'/a(1);   %--- b() & a() are now rows
  a = a(:).'/a(1);
  LB = length(b);  LA = length(a);
  if( LA == 1 )
     r = []; p = []; k = b;   %--- no poles!
     return
  end
  Nres = LA-1;
  p = zeros(Nres,1); r = p;
  LK = max([0;LB-Nres]);
  k = [];
  if( LK > 0 )
     [k,b] = deconv(fliplr(b),fliplr(a));
     k = fliplr(k);
     b(1:LK) = [];
     b = fliplr(b);
     LB = Nres;
  end

  p = roots(a);
  N = Nres;         %--- number of terms in r()
  xtra = 1;         %--- extra pts invoke least-squares approx
  imp = zeros(N+xtra,1);     %--- zero padding to make impulse
  imp(1) = 1;
  h = filter( b, a, imp );
% polmax = max(abs(p));
  polmax = 1.0;
  h = h.*filter(1,[1 -1/polmax],imp);  % if polmax == 1, this is just h = h;
  [mults, idx] = mpoles( p, mpoles_tol );
  p = p(idx);
  S = zeros(N+xtra,N);
  for j = 1:Nres
     if( mults(j) > 1 )            %--- repeated pole
        S(:,j) = filter( 1, [1 -p(j)/polmax], S(:,j-1) );
     else
        S(:,j) = filter( 1, [1 -p(j)/polmax], imp );
     end
  end
  jdone = zeros(Nres,1);
  bflip = fliplr(b);
  for i=1:Nres
     ii = 0;
     if( i==Nres )
        ii = Nres;
     elseif( mults(i+1)==1 )
        ii = i;
     end
     if( ii > 0 )
        if( avg_roots )       %---  average repeated roots ??
          jkl = (i-mults(i)+1):i;
          p(jkl) = ones(mults(i),1)*mean( p(jkl) );
        end
        temp = fliplr(poly( p([1:(i-mults(i)), (i+1):Nres]) ));
        r(i) = polyval(bflip,1/p(i)) ./ polyval(temp,1/p(i));
        jdone(i) = 1;
     end
  end
%------ now do the repeated poles and the direct terms ------
  jjj = find(jdone==1);
  jkl = find(jdone~=1);
  if( any(jdone) )
     h = h - S(:,jjj)*r(jjj);
  end
  Nmultpoles = Nres - length(jjj);
  if( Nmultpoles > 0 )
     t = S(:,jkl)\h;
     r(jkl) = t(1:Nmultpoles);
  end
else
%============= partial fractions ---> B(z)/A(z) ============
     %----- NOW, B <--> R
     %-----      A <--> P
     %-----      T <--> K
  res = b(:);     %--- r is now a column
  pol = a(:);     %--- p is now a column
  LR = length(res);  LP = length(pol);  LK = length(t);
  if( LR ~= LP )
     error('Length of R and P vectors must be the same.')
  end
  if( LP == 0 )
     p = []; r = t(:).';     %--- no poles!
     return
  end
  N = LP+LK;            %--- number of terms in b() and a()

  [mults, idx] = mpoles( pol, mpoles_tol, 0 );  % Maintain relative pole ordering
  pol = pol(idx);     %--- re-arrange poles & residues
  res = res(idx);
  p = poly(pol);  % p = p(:);          %--- p is really A(z)

  if( LK > 0 )
     r = conv( p, t );   %--- A(z)K(z)
  else
     r = zeros(1,N);     %--- r is B(z), returned as ROW
  end
  for i=1:LP
     temp = poly( pol([1:(i-mults(i)), (i+1):LP]) );
     r = r + [res(i)*temp zeros(1,N-length(temp))];
  end
  %  r=r(:).';
  %  p=p(:).';   % polynomials are ROWs
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -