📄 integration.java
字号:
double i = (rightEndpoint - leftEndpoint)
* (fx[0] / 8 + 3 * fx[1] / 8 + 3 * fx[2] / 8 + fx[3] / 8);
output += "\n\n" + fmt.format(i);
break;
}
case 4: {
output += "h=" + fmt.format(h);
for (int i = 0; i < n + 1; i++)
output += "\n\n" + "x" + i + "=" + fmt.format(x[i]);
for (int i = 0; i < n + 1; i++)
output += "\n\n" + "f(x" + i + ")=" + fmt.format(fx[i]);
output += "\n\nI=(" + fmt.format(rightEndpoint) + "-"
+ fmt.format(leftEndpoint) + ")*";
output += "\n\n(7/90*" + fmt.format(fx[0]) + "+";
output += "\n\n16/45*" + fmt.format(fx[1]) + "+";
output += "\n\n2/15*" + fmt.format(fx[2]) + "+";
output += "\n\n16/45*" + fmt.format(fx[3]) + "+";
output += "\n\n7/90*" + fmt.format(fx[4]) + ")=";
double i = (rightEndpoint - leftEndpoint)
* (7 * fx[0] / 90 + 16 * fx[1] / 45 + 2 * fx[2] / 15
+ 16 * fx[3] / 45 + 7 * fx[4] / 90);
output += "\n\n" + fmt.format(i);
break;
}
case 5: {
output += "h=" + fmt.format(h);
for (int i = 0; i < n + 1; i++)
output += "\n\n" + "x" + i + "=" + fmt.format(x[i]);
for (int i = 0; i < n + 1; i++)
output += "\n\n" + "f(x" + i + ")=" + fmt.format(fx[i]);
output += "\n\nI=(" + fmt.format(rightEndpoint) + "-"
+ fmt.format(leftEndpoint) + ")*";
output += "\n\n(19/288*" + fmt.format(fx[0]) + "+";
output += "\n\n25/96*" + fmt.format(fx[1]) + "+";
output += "\n\n25/144*" + fmt.format(fx[2]) + "+";
output += "\n\n25/144*" + fmt.format(fx[3]) + "+";
output += "\n\n25/96*" + fmt.format(fx[4]) + "+";
output += "\n\n19/288*" + fmt.format(fx[5]) + ")=";
double i = (rightEndpoint - leftEndpoint)
* (19 * fx[0] / 288 + 25 * fx[1] / 96 + 25 * fx[2]
/ 144 + 25 * fx[3] / 144 + 25 * fx[4] / 96 + 19 * fx[5] / 288);
output += "\n\n" + fmt.format(i);
break;
}
case 6: {
output += "h=" + fmt.format(h);
for (int i = 0; i < n + 1; i++)
output += "\n\n" + "x" + i + "=" + fmt.format(x[i]);
for (int i = 0; i < n + 1; i++)
output += "\n\n" + "f(x" + i + ")=" + fmt.format(fx[i]);
output += "\n\nI=(" + fmt.format(rightEndpoint) + "-"
+ fmt.format(leftEndpoint) + ")*";
output += "\n\n(41/840*" + fmt.format(fx[0]) + "+";
output += "\n\n9/35*" + fmt.format(fx[1]) + "+";
output += "\n\n9/280*" + fmt.format(fx[2]) + "+";
output += "\n\n34/105*" + fmt.format(fx[3]) + "+";
output += "\n\n9/280*" + fmt.format(fx[4]) + "+";
output += "\n\n9/35*" + fmt.format(fx[5]) + "+";
output += "\n\n41/840*" + fmt.format(fx[6]) + ")=";
double i = (rightEndpoint - leftEndpoint)
* (41 * fx[0] / 840 + 9 * fx[1] / 35 + 9 * fx[2] / 280
+ 34 * fx[3] / 105 + 9 * fx[4] / 280 + 9
* fx[5] / 35 + 41 * fx[6] / 840);
output += "\n\n" + fmt.format(i);
break;
}
case 7: {
output += "h=" + fmt.format(h);
for (int i = 0; i < n + 1; i++)
output += "\n\n" + "x" + i + "=" + fmt.format(x[i]);
for (int i = 0; i < n + 1; i++)
output += "\n\n" + "f(x" + i + ")=" + fmt.format(fx[i]);
output += "\n\nI=(" + fmt.format(rightEndpoint) + "-"
+ fmt.format(leftEndpoint) + ")*";
output += "\n\n(751/17280*" + fmt.format(fx[0]) + "+";
output += "\n\n3577/17280*" + fmt.format(fx[1]) + "+";
output += "\n\n1323/17280*" + fmt.format(fx[2]) + "+";
output += "\n\n2989/17280*" + fmt.format(fx[3]) + "+";
output += "\n\n2989/17280*" + fmt.format(fx[4]) + "+";
output += "\n\n1323/17280*" + fmt.format(fx[5]) + "+";
output += "\n\n3577/17280*" + fmt.format(fx[6]) + "+";
output += "\n\n751/17280*" + fmt.format(fx[7]) + ")=";
double i = (rightEndpoint - leftEndpoint)
* (751 * fx[0] / 17280 + 3577 * fx[1] / 17280 + 1323
* fx[2] / 17280 + 2989 * fx[3] / 17280 + 2989
* fx[4] / 17280 + 1323 * fx[5] / 17280 + 3577
* fx[6] / 17280 + 751 * fx[6] / 17280);
output += "\n\n" + fmt.format(i);
break;
}
}
} else
output += "n>7,不建议用牛顿柯特斯公式求积分.";
return output;
}
/**
* 复化牛顿柯特斯公式:积分区间分为m大段,每大段都分为n小段并用牛顿柯特斯公式.
*
* @param m
* 大段数目
* @param n
* 每大段分为n小段,用牛顿柯特斯公式
* @return 积分值
*/
public double minuteNewtonCotes(int m, int n) {
double h;// 大段步长
double[] x;// 把积分区间分为m大段的节点
Integration[] problems;// 每大段都构造一个新积分,然后用牛顿柯特斯公式
double I=0;//积分值
h = (rightEndpoint - leftEndpoint) / m;
x = new double[m + 1];
for (int i = 0; i < m + 1; i++)
x[i] = leftEndpoint + i * h;// (i=0,1,...,m)
problems = new Integration[m];
for (int i = 0; i < m; i++)
problems[i] = new Integration(x[i], x[i + 1], function);// 构造每大段的积分
for (int i = 0; i < m; i++)
I+=problems[i].getSoutionByNewtonCotes(n);// 每大段用牛顿柯特斯公式
return I;
}
/**
* 龙贝格法,用本方法求积分非常好用.
*
* @param errorAllowed
* 允许误差
* @return 将会输出用龙贝格法的计算过程和积分结果I
*/
public String romberg(double errorAllowed) {
final int n = 8192;// 这里为了使龙贝格法达到要求允许误差,建议分段数n为8192(即2^13)(利用循环容易实现x与fx的赋值,无论n多大)
double h;// 步长
double[] x, fx;// 节点,节点代入被积函数的值
double[] t = new double[20], s = new double[20], c = new double[20], r = new double[20];// 书上的T,S,C,R
double I = 0;
String output = "\n";
h = (rightEndpoint - leftEndpoint) / n;
x = new double[n + 1];
fx = new double[n + 1];
for (int i = 0; i < n + 1; i++)
x[i] = leftEndpoint + i * h;// (i=0,1,...,n)
for (int i = 0; i < n + 1; i++)
fx[i] = function.f(x[i]);// (i=0,1,...,n)
int i = 0;
boolean stable = false;// 是否稳定至要求精度
while (!stable) {
// 计算T2^i
if (i == 0) {
output += "\n\nT" + (int) Math.pow(2, i) + "=0.5*[f(" + x[0]
+ ")+f(" + x[n] + ")]=";
} else {
output += "\n\nT" + (int) Math.pow(2, i) + "=0.5*T"
+ (int) Math.pow(2, i - 1) + "+(" + rightEndpoint + "-"
+ leftEndpoint + ")/" + (int) Math.pow(2, i) + "*[";
for (int k = 1; k <= (int) Math.pow(2, i - 1); k++) {
output += "f(" + (2 * k - 1) + "/" + (int) Math.pow(2, i)
+ ")";
if (k != (int) Math.pow(2, i - 1))
output += "+";
}
output += "]=";
}
double sum = 0;
if (i == 0)
t[i] = (rightEndpoint - leftEndpoint) / 2 * (fx[0] + fx[n]);
else {
for (int k = 1; k <= (int) Math.pow(2, i - 1); k++)
sum += fx[(int) (n / (int) Math.pow(2, i) * (2 * k - 1))];
t[i] = 0.5 * t[i - 1] + (rightEndpoint - leftEndpoint)
/ (int) Math.pow(2, i) * sum;
}
output += fmt.format(t[i]);
if (i == 1) {
if (Math.abs(t[i] - t[i - 1]) < errorAllowed) {
I = t[i];
stable = true;
}
} else if (i == 2) {
if (Math.abs(t[i] - s[0]) < errorAllowed) {
I = t[i];
stable = true;
}
} else if (i == 3) {
if (Math.abs(t[i] - c[0]) < errorAllowed) {
I = t[i];
stable = true;
}
} else if (i > 3) {
if (Math.abs(t[i] - r[i - 4]) < errorAllowed) {
I = t[i];
stable = true;
}
}
if (i > 0 && !stable) {// 若是第一行则只有T1,否则计算S2^(i-1)
output += "\n\nS" + (int) Math.pow(2, i - 1) + "=4*T"
+ (int) Math.pow(2, i) + "/3" + "-T"
+ (int) Math.pow(2, i - 1) + "/3=";
s[i - 1] = 4 * t[i] / 3 - t[i - 1] / 3;
output += fmt.format(s[i - 1]);
if (Math.abs(t[i] - s[i - 1]) < errorAllowed) {
I = s[i - 1];
stable = true;
}// 已经稳定
}
if (!stable && i > 1) {// 若是第二行则只有T2,S2,否则若还不稳定则计算C2^(i-2)
output += "\n\nC" + (int) Math.pow(2, i - 2) + "=4^2*S"
+ (int) Math.pow(2, i - 1) + "/(4^2-1)" + "-S"
+ (int) Math.pow(2, i - 2) + "/(4^2-1)=";
c[i - 2] = 16 * s[i - 1] / 15 - s[i - 2] / 15;
output += fmt.format(c[i - 2]);
if (Math.abs(s[i - 1] - c[i - 2]) < errorAllowed) {
I = c[i - 2];
stable = true;
}// 已经稳定
}
if (!stable && i > 2) {// 若是第三行则只有T2,S2,C1,否则若还不稳定则计算R2^(i-3)
output += "\n\nR" + (int) Math.pow(2, i - 3) + "=4^3*C"
+ (int) Math.pow(2, i - 2) + "/(4^3-1)" + "-C"
+ (int) Math.pow(2, i - 3) + "/(4^3-1)=";
r[i - 3] = 64 * c[i - 2] / 63 - c[i - 3] / 63;
output += fmt.format(r[i - 3]);
if (Math.abs(c[i - 2] - r[i - 3]) < errorAllowed) {
I = r[i - 3];
stable = true;
}// 稳定
}
i++;
}
output += "\n\nI=" + fmt.format(I);
return output;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -