📄 rijndael.cpp
字号:
}
//DESTRUCTOR
CRijndael::~CRijndael()
{
}
//Expand a user-supplied key material into a session key.
// key - The 128/192/256-bit user-key to use.
// chain - initial chain block for CBC and CFB modes.
// keylength - 16, 24 or 32 bytes
// blockSize - 16, 24 or 32 bytes
void CRijndael::Initialize(char const* keydata, int keydatalength, char const* chain, int keylength,
int blockSize, int iMode, int iPadding)
{
//Check Initialization Data
if(NULL == keydata)
throw runtime_error(string(sm_szErrorMsg4));
if(keydatalength < 1)
throw runtime_error(string(sm_szErrorMsg5));
if(!(KL16==keylength || KL24==keylength || KL32==keylength))
throw runtime_error(string("Illegal Key Length!"));
if(!(BS16==blockSize || BS24==blockSize || BS32==blockSize))
throw runtime_error(string(sm_szErrorMsg6));
if(iMode<ECB || iMode>CFB)
throw runtime_error(string(sm_szErrorMsg2));
if(iPadding<ZEROES || iPadding>PKCS7)
throw runtime_error(string(sm_szErrorMsg3));
m_iMode = iMode;
m_iPadding = iPadding;
//Create the Key from Key Data
int i, j;
char key[KL32];
for(i=0,j=0; i<keylength; i++,j=(j+1)%keydatalength)
key[i] = keydata[j];
//Initialize the chain
m_blockSize = blockSize;
memcpy(m_chain0, chain, m_blockSize);
memcpy(m_chain, m_chain0, m_blockSize);
//Initialize the key
m_keylength = keylength;
memcpy(m_acKey, key, m_keylength);
//Calculate Number of Rounds
switch(m_keylength)
{
case 16:
m_iROUNDS = (m_blockSize == 16) ? 10 : (m_blockSize == 24 ? 12 : 14);
break;
case 24:
m_iROUNDS = (m_blockSize != 32) ? 12 : 14;
break;
default: // 32 bytes = 256 bits
m_iROUNDS = 14;
}
int BC = m_blockSize / 4;
//Encryption round keys
//Initialize to 0
for(i=0; i<=m_iROUNDS; i++)
{
for(j=0; j<BC; j++)
m_Ke[i][j] = 0;
}
//Decryption round keys
//Initialize to 0
for(i=0; i<=m_iROUNDS; i++)
{
for(j=0; j<BC; j++)
m_Kd[i][j] = 0;
}
int ROUND_KEY_COUNT = (m_iROUNDS + 1) * BC;
int KC = m_keylength/4;
//Copy user material bytes into temporary ints
int* pi = tk;
char const* pc = key;
for(i=0; i<KC; i++)
{
*pi = (unsigned char)*(pc++) << 24;
*pi |= (unsigned char)*(pc++) << 16;
*pi |= (unsigned char)*(pc++) << 8;
*(pi++) |= (unsigned char)*(pc++);
}
//Copy values into round key arrays
int t = 0;
for(j=0; (j<KC)&&(t<ROUND_KEY_COUNT); j++,t++)
{
m_Ke[t/BC][t%BC] = tk[j];
m_Kd[m_iROUNDS - (t/BC)][t%BC] = tk[j];
}
int tt, rconpointer = 0;
while(t < ROUND_KEY_COUNT)
{
//Extrapolate using phi (the round key evolution function)
tt = tk[KC-1];
tk[0] ^= (sm_S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^
(sm_S[(tt >> 8) & 0xFF] & 0xFF) << 16 ^
(sm_S[ tt & 0xFF] & 0xFF) << 8 ^
(sm_S[(tt >> 24) & 0xFF] & 0xFF) ^
(sm_rcon[rconpointer++] & 0xFF) << 24;
if(KC != 8)
for(i=1, j=0; i<KC;)
tk[i++] ^= tk[j++];
else
{
for(i=1, j=0; i<KC/2; )
tk[i++] ^= tk[j++];
tt = tk[KC/2-1];
tk[KC/2] ^= (sm_S[ tt & 0xFF] & 0xFF) ^
(sm_S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^
(sm_S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^
(sm_S[(tt >> 24) & 0xFF] & 0xFF) << 24;
for(j = KC/2, i=j+1; i<KC; )
tk[i++] ^= tk[j++];
}
//Copy values into round key arrays
for(j=0; (j<KC) && (t<ROUND_KEY_COUNT); j++, t++)
{
m_Ke[t/BC][t%BC] = tk[j];
m_Kd[m_iROUNDS - (t/BC)][t%BC] = tk[j];
}
}
//Inverse MixColumn where needed
for(int r=1; r<m_iROUNDS; r++)
for(j=0; j<BC; j++)
{
tt = m_Kd[r][j];
m_Kd[r][j] = sm_U1[(tt >> 24) & 0xFF] ^
sm_U2[(tt >> 16) & 0xFF] ^
sm_U3[(tt >> 8) & 0xFF] ^
sm_U4[tt & 0xFF];
}
//Initialization Flag
m_bInit = true;
}
//Resetting the Initialization Vector
void CRijndael::ResetChain()
{
if(false==m_bInit)
throw runtime_error(string(sm_szErrorMsg1));
memcpy(m_chain, m_chain0, m_blockSize);
}
//Compute Signature
void CRijndael::Signature(char* pcSig)
{
//8+32+2+2+1+1+1
char acSigData[48] = {0};
strcat(acSigData, "RIJNDAEL");
int iLen = strlen(acSigData);
memcpy(acSigData+iLen, m_acKey, m_keylength);
sprintf(acSigData+iLen+m_keylength, "%d%d%d%d", m_blockSize, m_keylength, m_iMode, m_iPadding);
CSHA oSHA;
oSHA.AddData(acSigData, strlen(acSigData));
oSHA.FinalDigest(pcSig);
}
//Convenience method to encrypt exactly one block of plaintext, assuming
//Rijndael's default block size (128-bit).
// in - The plaintext
// result - The ciphertext generated from a plaintext using the key
void CRijndael::DefEncryptBlock(char const* in, char* result)
{
if(false==m_bInit)
throw runtime_error(string(sm_szErrorMsg1));
int* Ker = m_Ke[0];
int t0 = ((unsigned char)*(in++) << 24);
t0 |= ((unsigned char)*(in++) << 16);
t0 |= ((unsigned char)*(in++) << 8);
(t0 |= (unsigned char)*(in++)) ^= Ker[0];
int t1 = ((unsigned char)*(in++) << 24);
t1 |= ((unsigned char)*(in++) << 16);
t1 |= ((unsigned char)*(in++) << 8);
(t1 |= (unsigned char)*(in++)) ^= Ker[1];
int t2 = ((unsigned char)*(in++) << 24);
t2 |= ((unsigned char)*(in++) << 16);
t2 |= ((unsigned char)*(in++) << 8);
(t2 |= (unsigned char)*(in++)) ^= Ker[2];
int t3 = ((unsigned char)*(in++) << 24);
t3 |= ((unsigned char)*(in++) << 16);
t3 |= ((unsigned char)*(in++) << 8);
(t3 |= (unsigned char)*(in++)) ^= Ker[3];
int a0, a1, a2, a3;
//Apply Round Transforms
for (int r = 1; r < m_iROUNDS; r++)
{
Ker = m_Ke[r];
a0 = (sm_T1[(t0 >> 24) & 0xFF] ^
sm_T2[(t1 >> 16) & 0xFF] ^
sm_T3[(t2 >> 8) & 0xFF] ^
sm_T4[t3 & 0xFF]) ^ Ker[0];
a1 = (sm_T1[(t1 >> 24) & 0xFF] ^
sm_T2[(t2 >> 16) & 0xFF] ^
sm_T3[(t3 >> 8) & 0xFF] ^
sm_T4[t0 & 0xFF]) ^ Ker[1];
a2 = (sm_T1[(t2 >> 24) & 0xFF] ^
sm_T2[(t3 >> 16) & 0xFF] ^
sm_T3[(t0 >> 8) & 0xFF] ^
sm_T4[t1 & 0xFF]) ^ Ker[2];
a3 = (sm_T1[(t3 >> 24) & 0xFF] ^
sm_T2[(t0 >> 16) & 0xFF] ^
sm_T3[(t1 >> 8) & 0xFF] ^
sm_T4[t2 & 0xFF]) ^ Ker[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
}
//Last Round is special
Ker = m_Ke[m_iROUNDS];
int tt = Ker[0];
result[0] = sm_S[(t0 >> 24) & 0xFF] ^ (tt >> 24);
result[1] = sm_S[(t1 >> 16) & 0xFF] ^ (tt >> 16);
result[2] = sm_S[(t2 >> 8) & 0xFF] ^ (tt >> 8);
result[3] = sm_S[t3 & 0xFF] ^ tt;
tt = Ker[1];
result[4] = sm_S[(t1 >> 24) & 0xFF] ^ (tt >> 24);
result[5] = sm_S[(t2 >> 16) & 0xFF] ^ (tt >> 16);
result[6] = sm_S[(t3 >> 8) & 0xFF] ^ (tt >> 8);
result[7] = sm_S[t0 & 0xFF] ^ tt;
tt = Ker[2];
result[8] = sm_S[(t2 >> 24) & 0xFF] ^ (tt >> 24);
result[9] = sm_S[(t3 >> 16) & 0xFF] ^ (tt >> 16);
result[10] = sm_S[(t0 >> 8) & 0xFF] ^ (tt >> 8);
result[11] = sm_S[t1 & 0xFF] ^ tt;
tt = Ker[3];
result[12] = sm_S[(t3 >> 24) & 0xFF] ^ (tt >> 24);
result[13] = sm_S[(t0 >> 16) & 0xFF] ^ (tt >> 16);
result[14] = sm_S[(t1 >> 8) & 0xFF] ^ (tt >> 8);
result[15] = sm_S[t2 & 0xFF] ^ tt;
}
//Convenience method to decrypt exactly one block of plaintext, assuming
//Rijndael's default block size (128-bit).
// in - The ciphertext.
// result - The plaintext generated from a ciphertext using the session key.
void CRijndael::DefDecryptBlock(char const* in, char* result)
{
if(false==m_bInit)
throw runtime_error(string(sm_szErrorMsg1));
int* Kdr = m_Kd[0];
int t0 = ((unsigned char)*(in++) << 24);
t0 = t0 | ((unsigned char)*(in++) << 16);
t0 |= ((unsigned char)*(in++) << 8);
(t0 |= (unsigned char)*(in++)) ^= Kdr[0];
int t1 = ((unsigned char)*(in++) << 24);
t1 |= ((unsigned char)*(in++) << 16);
t1 |= ((unsigned char)*(in++) << 8);
(t1 |= (unsigned char)*(in++)) ^= Kdr[1];
int t2 = ((unsigned char)*(in++) << 24);
t2 |= ((unsigned char)*(in++) << 16);
t2 |= ((unsigned char)*(in++) << 8);
(t2 |= (unsigned char)*(in++)) ^= Kdr[2];
int t3 = ((unsigned char)*(in++) << 24);
t3 |= ((unsigned char)*(in++) << 16);
t3 |= ((unsigned char)*(in++) << 8);
(t3 |= (unsigned char)*(in++)) ^= Kdr[3];
int a0, a1, a2, a3;
for(int r = 1; r < m_iROUNDS; r++) // apply round transforms
{
Kdr = m_Kd[r];
a0 = (sm_T5[(t0 >> 24) & 0xFF] ^
sm_T6[(t3 >> 16) & 0xFF] ^
sm_T7[(t2 >> 8) & 0xFF] ^
sm_T8[ t1 & 0xFF] ) ^ Kdr[0];
a1 = (sm_T5[(t1 >> 24) & 0xFF] ^
sm_T6[(t0 >> 16) & 0xFF] ^
sm_T7[(t3 >> 8) & 0xFF] ^
sm_T8[ t2 & 0xFF] ) ^ Kdr[1];
a2 = (sm_T5[(t2 >> 24) & 0xFF] ^
sm_T6[(t1 >> 16) & 0xFF] ^
sm_T7[(t0 >> 8) & 0xFF] ^
sm_T8[ t3 & 0xFF] ) ^ Kdr[2];
a3 = (sm_T5[(t3 >> 24) & 0xFF] ^
sm_T6[(t2 >> 16) & 0xFF] ^
sm_T7[(t1 >> 8) & 0xFF] ^
sm_T8[ t0 & 0xFF] ) ^ Kdr[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
}
//Last Round is special
Kdr = m_Kd[m_iROUNDS];
int tt = Kdr[0];
result[ 0] = sm_Si[(t0 >> 24) & 0xFF] ^ (tt >> 24);
result[ 1] = sm_Si[(t3 >> 16) & 0xFF] ^ (tt >> 16);
result[ 2] = sm_Si[(t2 >> 8) & 0xFF] ^ (tt >> 8);
result[ 3] = sm_Si[ t1 & 0xFF] ^ tt;
tt = Kdr[1];
result[ 4] = sm_Si[(t1 >> 24) & 0xFF] ^ (tt >> 24);
result[ 5] = sm_Si[(t0 >> 16) & 0xFF] ^ (tt >> 16);
result[ 6] = sm_Si[(t3 >> 8) & 0xFF] ^ (tt >> 8);
result[ 7] = sm_Si[ t2 & 0xFF] ^ tt;
tt = Kdr[2];
result[ 8] = sm_Si[(t2 >> 24) & 0xFF] ^ (tt >> 24);
result[ 9] = sm_Si[(t1 >> 16) & 0xFF] ^ (tt >> 16);
result[10] = sm_Si[(t0 >> 8) & 0xFF] ^ (tt >> 8);
result[11] = sm_Si[ t3 & 0xFF] ^ tt;
tt = Kdr[3];
result[12] = sm_Si[(t3 >> 24) & 0xFF] ^ (tt >> 24);
result[13] = sm_Si[(t2 >> 16) & 0xFF] ^ (tt >> 16);
result[14] = sm_Si[(t1 >> 8) & 0xFF] ^ (tt >> 8);
result[15] = sm_Si[ t0 & 0xFF] ^ tt;
}
//Encrypt exactly one block of plaintext.
// in - The plaintext.
// result - The ciphertext generated from a plaintext using the key.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -