⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tcmplxsolve.cc

📁 LAPACK++ (Linear Algebra PACKage in C++) is a software library for numerical linear algebra that sol
💻 CC
字号:
////              LAPACK++ 1.1 Linear Algebra Package 1.1//               University of Tennessee, Knoxvilee, TN.//            Oak Ridge National Laboratory, Oak Ridge, TN.//        Authors: J. J. Dongarra, E. Greaser, R. Pozo, D. Walker//                 (C) 1992-1996 All Rights Reserved////                             NOTICE//// Permission to use, copy, modify, and distribute this software and// its documentation for any purpose and without fee is hereby granted// provided that the above copyright notice appear in all copies and// that both the copyright notice and this permission notice appear in// supporting documentation.//// Neither the Institutions (University of Tennessee, and Oak Ridge National// Laboratory) nor the Authors make any representations about the suitability // of this software for any purpose.  This software is provided ``as is'' // without express or implied warranty.//// LAPACK++ was funded in part by the U.S. Department of Energy, the// National Science Foundation and the State of Tennessee.#include "lafnames.h"       /* macros for LAPACK++ filenames */#include LA_GEN_MAT_COMPLEX_H#include LA_VECTOR_DOUBLE_H #include "blaspp.h"#include LA_SOLVE_DOUBLE_H#include LA_GENERATE_MAT_DOUBLE_H#include LA_EXCEPTION_H#include LA_UTIL_H#include "lasvd.h"bool output = true;double residual(LaGenMatComplex &A, LaVectorComplex &x,     const LaVectorComplex& b){    int M = A.size(0);    int N = A.size(1);    LaVectorComplex Axb(b);    Blas_Mat_Vec_Mult(A, x, Axb, 1.0, -1.0); // = A*x-b    if (output) {	std::cout << "\tNorm_Inf(A*x-b)" << Norm_Inf(Axb) << std::endl;	std::cout << "\tNorm_Inf(A) " << Norm_Inf(A) << std::endl;	std::cout << "\tNorm_Inf(x) " << Norm_Inf(x) << std::endl;	std::cout << "\tMacheps :" << Mach_eps_double() << std::endl;    }    if (M>N)    {        LaVectorComplex R(N);        Blas_Mat_Trans_Vec_Mult(A, Axb, R);        return Norm_Inf(R) /             (Norm_Inf(A)* Norm_Inf(x) * N * Mach_eps_double());    }    else    {        return Norm_Inf(Axb ) /                ( Norm_Inf(A)* Norm_Inf(x) * N * Mach_eps_double());    }}bool testQRsolve(int M, int N){#ifndef HPPA   const char fname[] = "TestGenLinearSolve(LaGenMat, x, b) ";#else   char *fname = NULL;#endif   bool error = false;   double aa[] = { 1, 2, 3, 4, 5, 6 };   double bb[] = { 7, 8, 9 };   {      LaGenMatComplex A2tmp(LaGenMatDouble(aa, 3, 2, false)), A2(A2tmp);      LaGenMatComplex B2(LaGenMatDouble(bb, 3, 1, true));      LaGenMatComplex X2(2, 1);      if (output) std::cout << fname << ": LaQRLinearSolve: Matrix A=" << A2		<< "  Right hand side B=" << B2;      LaQRLinearSolveIP(A2, X2, B2);      if (output) std::cout << "  Solution X=" << X2;      //std::cout << "Residual " << residual(A2tmp, X2, B2) << std::endl;      double cc2[] = { -1, 2 };      double diff = Norm_Inf(X2 - LaGenMatComplex(LaGenMatDouble(cc2, 2, 1)));      if (output) std::cout << "Diff to known solution: " << diff << std::endl		<< std::endl;      if (diff > 1e-10)	 error = true;   }   {      LaGenMatComplex A1(LaGenMatDouble(aa, 2, 3, true));      LaGenMatComplex B1(LaGenMatDouble(bb, 2, 1, true));      LaGenMatComplex X1(3, 1);      if (output) std::cout << fname << ": LaQRLinearSolve: Matrix A=" << A1		<< "  Right hand side B=" << B1;      LaQRLinearSolveIP(A1, X1, B1);      if (output) std::cout << "  Solution X=" << X1;      double cc1[] = { -3.0556, 0.1111, 3.2778 };      double diff = Norm_Inf(X1 - LaGenMatComplex(LaGenMatDouble(cc1, 3, 1)));      if (output) std::cout << "Diff to known solution: " << diff << std::endl		<< std::endl;      if (diff > 1e-4)	 error = true;   }   {      LaGenMatComplex A3(LaGenMatDouble(aa, 2, 2, true));      LaGenMatComplex B3(LaGenMatDouble(bb, 2, 1, true));      LaGenMatComplex X3(2, 1);      if (output) std::cout << fname << ": LaQRLinearSolve: Matrix A=" << A3		<< "  Right hand side B=" << B3;      LaQRLinearSolveIP(A3, X3, B3);      if (output) std::cout << "  Solution X=" << X3;      double cc3[] = { -6, 6.5 };      double diff = Norm_Inf(X3 - LaGenMatComplex(LaGenMatDouble(cc3, 2, 1)));      if (output) std::cout << "Diff to known solution: " << diff << std::endl		<< std::endl;      if (diff > 1e-10)	 error = true;   }   return error;}int TestGenLinearSolve(int M,int N){    LaGenMatComplex A(M,N);    LaVectorComplex x(N), b(M);    bool error = false;#ifndef HPPA    const char fname[] = "TestGenLinearSolve(LaGenMat, x, b) ";#else    char *fname = NULL;#endif    //char e = 'e';    double norm;    double res;    LaRandUniform(A, -1, 1);    // save a snapshot of what A looked like before the solution    LaGenMatComplex old_A = A;    b = 1.1;    if (output)    std::cout << fname << ": testing LaLinearSolve(Gen,...) M= "<< M        << " N = " << N << std::endl;    LaLinearSolve(A, x, b);    LaGenMatComplex diff_A(old_A);        if ( (norm = Norm_Inf( old_A - A)) >  0.0)  // this is an exact test, not                                         // necessary to worry about                                         // round-off issues.  We                                         // are testing to see A was                                         // overwritten.    {        std::cerr << fname << ": overwrote 1st arg.\n";        std::cerr << "       error norm: " << norm << std::endl;        error = true; // exit(1);    }    res = residual(A,x,b);    if (res > 1)    {        std::cerr << fname << "resdiual " << res << " is to too high.\n";        error = true; // exit(1);    }    else	if (output)	    std::cout << fname << ": LaLinearSolve() success.\n\n";    // now try the in-place solver    if (output)    std::cout << fname << ": testing LaLinearSolveIP(Gen,...) \n";    LaLinearSolveIP(A, x, b);    res = residual(old_A, x, b);    if (res > 1)    {        std::cerr << fname << "resdiual " << res << " is to too high.\n";        error = true; // exit(1);    }    else	if (output)	    std::cout << fname << ": LaLinearSolveIP() success.\n\n";    if (output) std::cout << fname << ": Matrix A=" << A	      << std::endl;    LaVectorDouble S(std::min(M,N));    LaGenMatComplex U(M,M), VT(N,N);//     S = 0;//     U = 0;//     VT = 0;    LaSVD_IP(A, S, U, VT);    if (output) std::cout << fname << ": Matrix A=" << A	      << "  Singular values sigma = " << S	      << "  Left S.vect. U = " << U	      << "  Right S.vect. VT = " << VT	      << std::endl;    error = error || testQRsolve(M, N);    if (error)        exit(1);    return 0;}int main(int argc, char **argv){    std::cout.precision(4);    std::cout.setf(std::ios::scientific, std::ios::floatfield);    LaException::enablePrint(true);    if (argc < 2)    {        std::cerr << "Usage " << argv[0] << " M [ N ] " << std::endl;        exit(1);    }    int M = atoi(argv[1]);    int N;    if (argc < 3)	N = M;    else 	N = ( atoi(argv[2]) > 0 ? atoi(argv[2]) : M );    if (argc > 2)	if (std::string(argv[2])=="q" || 	    (argc > 3 && std::string(argv[3])=="q") )	    output = false;    if (output)	std::cout << "Testing " << M << " x " << N << " system." << std::endl;    TestGenLinearSolve(M,N);    return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -