📄 ttdd.cc
字号:
//// LAPACK++ 1.1 Linear Algebra Package 1.1// University of Tennessee, Knoxvilee, TN.// Oak Ridge National Laboratory, Oak Ridge, TN.// Authors: J. J. Dongarra, E. Greaser, R. Pozo, D. Walker// (C) 1992-1996 All Rights Reserved//// NOTICE//// Permission to use, copy, modify, and distribute this software and// its documentation for any purpose and without fee is hereby granted// provided that the above copyright notice appear in all copies and// that both the copyright notice and this permission notice appear in// supporting documentation.//// Neither the Institutions (University of Tennessee, and Oak Ridge National// Laboratory) nor the Authors make any representations about the suitability // of this software for any purpose. This software is provided ``as is'' // without express or implied warranty.//// LAPACK++ was funded in part by the U.S. Department of Energy, the// National Science Foundation and the State of Tennessee.#include <stdlib.h>#include "lafnames.h"#include LA_TRIDIAG_MAT_DOUBLE_H#include "latmpl.h"#include "trfd.h"using namespace std;bool test_diagassign(int M){ double alpha=1.5; bool all_ok = true; LaVectorDouble x(M), b(M), Diag(M), DiagL(M-1), DiagU(M-1); for (int i=0; i< M; i++) Diag(i)=1+2*alpha*0; for (int i=0; i< M-1; i++) DiagL(i)=-3*alpha; for (int i=0; i< M-1; i++) DiagU(i)=-alpha; cout << "Testing assignment to tridiag matrix. DiagL= "; cout << DiagL << endl; LaTridiagMatDouble Mat(M); Mat.diag(0)=Diag; Mat.diag(-1).inject(DiagL); Mat.diag(1)=DiagU; //for (int i=0; i< M-1; i++) //cout << Diag(i) << endl; cout << "and Mat = " << Mat << endl; cout << "and Mat(0,0) = " << Mat(0,0) << endl; cout << "and Mat=" << endl; for (int i = 0; i < M; ++i) { for (int j = 0; j < M; ++j) if (i-j < -1 || i-j > 1) cout << " * "; else cout << Mat(i,j) << " "; cout << endl; } if (Mat(0,0) != Diag(0)) all_ok = false; // define X and B LaGenMatDouble B(M,1); la::rand(B); // fill B with values from somewhere // To solve Ax=b: LaTridiagFactDouble Afact; LaGenMatDouble X(M,1); LaTridiagMatFactorize(Mat, Afact); // calculate LU factorization LaLinearSolve(Afact, X, B); // solve; result is in X return all_ok;}int main(int argc, char *argv[]){ int N; bool okay = true; if (argc < 2) { std::cerr << "Usage: " << argv[0] << " N " << std::endl; exit(1); } N = atoi(argv[1]); // Test constructors // LaTridiagMatDouble A; std::cout << std::endl << "null consturctor " << std::endl; std::cout << "A:\n" << A.info() << std::endl; std::cout << std::endl; LaTridiagMatDouble C(N); std::cout << std::endl << "(int, int) constructor " << std::endl; std::cout << "C(N):\n" << C.info() << std::endl; std::cout << std::endl; std::cout << " &C(0,0): " << (long) &C(0,0) << std::endl; std::cout << std::endl; LaTridiagMatDouble D(C); // D is also N,N std::cout << std::endl << "X(const &X) constructor " << std::endl; std::cout << "D(C):\n" << D.info() << std::endl; std::cout << std::endl; std::cout << "test A.ref(C)\n"; A.ref(C); std::cout << "A:\n" << A.info() << std::endl; std::cout << "D.diag(0) = 3.3" << std::endl; D.diag(0) = 3.3; std::cout << std::endl; std::cout << "D:\n" << D << std::endl; std::cout << std::endl; std::cout << "test A.copy(D)\n"; A.copy(D); std::cout << "A:\n" << A.info() << std::endl; std::cout << "A:\n" << A << std::endl; LaVectorDouble tmp(3*N-2); tmp(LaIndex(0,N-2)) = 9.9; C.diag(-1)(LaIndex(0,N-2)) = 1.1; std::cout << "\nC:\n" << C << std::endl; C.diag(-1)(LaIndex(0,N-2)) = tmp(LaIndex(0,N-2)); std::cout << std::endl; std::cout << "test C.diag(-1)(LaIndex(0,N-2)) = tmp(LaIndex(0,N-2))\n"; std::cout << "\nC:\n" << C << std::endl; std::cout << std::endl;// std::cout << "\ntest error message: C.diag(3))\n";// C.diag(3) = 5.0;// std::cout << std::endl; okay = okay && test_diagassign(N); return okay ? 0 : -1;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -