⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trmd.cc

📁 LAPACK++ (Linear Algebra PACKage in C++) is a software library for numerical linear algebra that sol
💻 CC
字号:
////              LAPACK++ 1.1 Linear Algebra Package 1.1//               University of Tennessee, Knoxvilee, TN.//            Oak Ridge National Laboratory, Oak Ridge, TN.//        Authors: J. J. Dongarra, E. Greaser, R. Pozo, D. Walker//                 (C) 1992-1996 All Rights Reserved////                             NOTICE//// Permission to use, copy, modify, and distribute this software and// its documentation for any purpose and without fee is hereby granted// provided that the above copyright notice appear in all copies and// that both the copyright notice and this permission notice appear in// supporting documentation.//// Neither the Institutions (University of Tennessee, and Oak Ridge National// Laboratory) nor the Authors make any representations about the suitability // of this software for any purpose.  This software is provided ``as is'' // without express or implied warranty.//// LAPACK++ was funded in part by the U.S. Department of Energy, the// National Science Foundation and the State of Tennessee.#ifdef HAVE_CONFIG_H# include <config.h>#endif#include "arch.h"#include "lafnames.h"#include LA_EXCEPTION_H#include LA_TRIDIAG_MAT_DOUBLE_H#include LA_TRIDIAG_FACT_DOUBLE_HDLLIMPORT double LaTridiagMatDouble::outofbounds_ = 0; // set outofbounds_. DLLIMPORT int LaTridiagMatDouble::debug_ = 0; // set debug to 0 initially.DLLIMPORT int* LaTridiagMatDouble::info_= new int;  // turn off info print flag.    // constructorsLaTridiagMatDouble::LaTridiagMatDouble()   : du2_(), du_(), d_(), dl_(), size_(0){}LaTridiagMatDouble::LaTridiagMatDouble(int N)   : du2_(N-2), du_(N-1), d_(N), dl_(N-1), size_(N){}    LaTridiagMatDouble::LaTridiagMatDouble(const LaTridiagMatDouble& td)   : du2_(td.du2_), du_(td.du_), d_(td.d_), dl_(td.dl_), size_(td.size_){   assert(d_.size() - 1 == du_.size());   assert(d_.size() - 1 == dl_.size());   assert(d_.size() - 2 == du2_.size());}LaTridiagMatDouble::LaTridiagMatDouble(const LaVectorDouble& diag,				       const LaVectorDouble& diaglower,				       const LaVectorDouble& diagupper)    : du2_(diag.size()-2)    , du_(diagupper)    , d_(diag)    , dl_(diaglower)    , size_(diag.size()){   assert(d_.size() - 1 == du_.size());   assert(d_.size() - 1 == dl_.size());}LaTridiagMatDouble::~LaTridiagMatDouble(){}LaVectorDouble& LaTridiagMatDouble::diag(int k){    switch (k)    {        case 0:   // main            return d_;        case -1:  // lower	    return dl_;        case 1:   // upper	    return du_;        case 2:   // second upper	    return du2_;        default:            std::cerr <<"Unrecognized integer representation of diagonal\n";	    throw LaException("LaTridiagMatDouble::diag", "Unrecognized integer representation of diagonal");    }}const LaVectorDouble& LaTridiagMatDouble::diag(int k) const{    switch (k)    {        case 0:   // main            return d_;        case -1:  // lower	    return dl_;        case 1:   // upper	    return du_;        case 2:   // second upper	    return du2_;        default:            std::cerr <<"Unrecognized integer representation of diagonal\n";	    throw LaException("LaTridiagMatDouble::diag", "Unrecognized integer representation of diagonal");    }}LaTridiagMatDouble& LaTridiagMatDouble::copy(const LaTridiagMatDouble&T) {   du2_.copy(T.du2_);   du_.copy(T.du_);   d_.copy(T.d_);   dl_.copy(T.dl_);       size_ = T.size_;   return *this;}LaTridiagMatDouble& LaTridiagMatDouble::inject(const LaTridiagMatDouble& T){   assert(size_ == T.size_);   du2_.inject(T.du2_);   du_.inject(T.du_);   d_.inject(T.d_);   dl_.inject(T.dl_);       return *this;}std::ostream& operator<<(std::ostream& s, const LaTridiagMatDouble& td){  if (*(td.info_))     // print out only matrix info, not actual values  {      *(td.info_) = 0; // reset the flag      s << "superdiag: (" << td.du_.size() << ") " ;      s <<" #ref: "<< td.du_.ref_count()<< std::endl;      s << "maindiag: (" << td.d_.size() << ") " ;      s <<" #ref: "<< td.d_.ref_count()<< std::endl;      s << "subdiag: (" << td.dl_.size() << ") " ;      s <<" #ref: "<< td.dl_.ref_count()<< std::endl;  }  else  {    s << td.diag(1);    s << td.diag(0);    s << td.diag(-1);    s << std::endl;  }   return s;}void LaTridiagMatFactorize(const LaTridiagMatDouble &A,				  LaTridiagFactDouble &AF){    integer N = A.size(), info = 0;    AF.copy(A);    double *DL = &AF.diag(-1)(0), *D = &AF.diag(0)(0),         *DU = &AF.diag(1)(0), *DU2 = &AF.diag(2)(0);    //std::cerr << " \t*\n";    F77NAME(dgttrf)(&N, DL, D, DU, DU2, &(AF.pivot()(0)), &info);    //std::cerr << " \t\t**\n";}/** Solve Ax=b with tridiagonal A and the calculated LU * factorization of A as returned by * LaTridiagMatFactorize(). Solves by \c dgttrs. * * \param AF The LU factorization of the A matrix * \param X The matrix that will contain the result afterwards. Size must be correct. * \param B The right-hand-side of the equation system Ax=b. */void LaLinearSolve(LaTridiagFactDouble &AF, LaGenMatDouble &X,			  const LaGenMatDouble &B){    char trans = 'N';    integer N = AF.size(), nrhs = X.size(1), ldb = B.size(0), info = 0;    double *DL = &AF.diag(-1)(0), *D = &AF.diag(0)(0),         *DU =  &AF.diag(1)(0), *DU2 = &AF.diag(2)(0);    X.inject(B);    F77NAME(dgttrs)(&trans, &N, &nrhs, DL, D, DU, DU2, &(AF.pivot()(0)),                    &X(0,0), &ldb, &info);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -