📄 trmd.cc
字号:
//// LAPACK++ 1.1 Linear Algebra Package 1.1// University of Tennessee, Knoxvilee, TN.// Oak Ridge National Laboratory, Oak Ridge, TN.// Authors: J. J. Dongarra, E. Greaser, R. Pozo, D. Walker// (C) 1992-1996 All Rights Reserved//// NOTICE//// Permission to use, copy, modify, and distribute this software and// its documentation for any purpose and without fee is hereby granted// provided that the above copyright notice appear in all copies and// that both the copyright notice and this permission notice appear in// supporting documentation.//// Neither the Institutions (University of Tennessee, and Oak Ridge National// Laboratory) nor the Authors make any representations about the suitability // of this software for any purpose. This software is provided ``as is'' // without express or implied warranty.//// LAPACK++ was funded in part by the U.S. Department of Energy, the// National Science Foundation and the State of Tennessee.#ifdef HAVE_CONFIG_H# include <config.h>#endif#include "arch.h"#include "lafnames.h"#include LA_EXCEPTION_H#include LA_TRIDIAG_MAT_DOUBLE_H#include LA_TRIDIAG_FACT_DOUBLE_HDLLIMPORT double LaTridiagMatDouble::outofbounds_ = 0; // set outofbounds_. DLLIMPORT int LaTridiagMatDouble::debug_ = 0; // set debug to 0 initially.DLLIMPORT int* LaTridiagMatDouble::info_= new int; // turn off info print flag. // constructorsLaTridiagMatDouble::LaTridiagMatDouble() : du2_(), du_(), d_(), dl_(), size_(0){}LaTridiagMatDouble::LaTridiagMatDouble(int N) : du2_(N-2), du_(N-1), d_(N), dl_(N-1), size_(N){} LaTridiagMatDouble::LaTridiagMatDouble(const LaTridiagMatDouble& td) : du2_(td.du2_), du_(td.du_), d_(td.d_), dl_(td.dl_), size_(td.size_){ assert(d_.size() - 1 == du_.size()); assert(d_.size() - 1 == dl_.size()); assert(d_.size() - 2 == du2_.size());}LaTridiagMatDouble::LaTridiagMatDouble(const LaVectorDouble& diag, const LaVectorDouble& diaglower, const LaVectorDouble& diagupper) : du2_(diag.size()-2) , du_(diagupper) , d_(diag) , dl_(diaglower) , size_(diag.size()){ assert(d_.size() - 1 == du_.size()); assert(d_.size() - 1 == dl_.size());}LaTridiagMatDouble::~LaTridiagMatDouble(){}LaVectorDouble& LaTridiagMatDouble::diag(int k){ switch (k) { case 0: // main return d_; case -1: // lower return dl_; case 1: // upper return du_; case 2: // second upper return du2_; default: std::cerr <<"Unrecognized integer representation of diagonal\n"; throw LaException("LaTridiagMatDouble::diag", "Unrecognized integer representation of diagonal"); }}const LaVectorDouble& LaTridiagMatDouble::diag(int k) const{ switch (k) { case 0: // main return d_; case -1: // lower return dl_; case 1: // upper return du_; case 2: // second upper return du2_; default: std::cerr <<"Unrecognized integer representation of diagonal\n"; throw LaException("LaTridiagMatDouble::diag", "Unrecognized integer representation of diagonal"); }}LaTridiagMatDouble& LaTridiagMatDouble::copy(const LaTridiagMatDouble&T) { du2_.copy(T.du2_); du_.copy(T.du_); d_.copy(T.d_); dl_.copy(T.dl_); size_ = T.size_; return *this;}LaTridiagMatDouble& LaTridiagMatDouble::inject(const LaTridiagMatDouble& T){ assert(size_ == T.size_); du2_.inject(T.du2_); du_.inject(T.du_); d_.inject(T.d_); dl_.inject(T.dl_); return *this;}std::ostream& operator<<(std::ostream& s, const LaTridiagMatDouble& td){ if (*(td.info_)) // print out only matrix info, not actual values { *(td.info_) = 0; // reset the flag s << "superdiag: (" << td.du_.size() << ") " ; s <<" #ref: "<< td.du_.ref_count()<< std::endl; s << "maindiag: (" << td.d_.size() << ") " ; s <<" #ref: "<< td.d_.ref_count()<< std::endl; s << "subdiag: (" << td.dl_.size() << ") " ; s <<" #ref: "<< td.dl_.ref_count()<< std::endl; } else { s << td.diag(1); s << td.diag(0); s << td.diag(-1); s << std::endl; } return s;}void LaTridiagMatFactorize(const LaTridiagMatDouble &A, LaTridiagFactDouble &AF){ integer N = A.size(), info = 0; AF.copy(A); double *DL = &AF.diag(-1)(0), *D = &AF.diag(0)(0), *DU = &AF.diag(1)(0), *DU2 = &AF.diag(2)(0); //std::cerr << " \t*\n"; F77NAME(dgttrf)(&N, DL, D, DU, DU2, &(AF.pivot()(0)), &info); //std::cerr << " \t\t**\n";}/** Solve Ax=b with tridiagonal A and the calculated LU * factorization of A as returned by * LaTridiagMatFactorize(). Solves by \c dgttrs. * * \param AF The LU factorization of the A matrix * \param X The matrix that will contain the result afterwards. Size must be correct. * \param B The right-hand-side of the equation system Ax=b. */void LaLinearSolve(LaTridiagFactDouble &AF, LaGenMatDouble &X, const LaGenMatDouble &B){ char trans = 'N'; integer N = AF.size(), nrhs = X.size(1), ldb = B.size(0), info = 0; double *DL = &AF.diag(-1)(0), *D = &AF.diag(0)(0), *DU = &AF.diag(1)(0), *DU2 = &AF.diag(2)(0); X.inject(B); F77NAME(dgttrs)(&trans, &N, &nrhs, DL, D, DU, DU2, &(AF.pivot()(0)), &X(0,0), &ldb, &info);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -