📄 lacomplex
字号:
template<typename _Tp> inline complex<_Tp> operator/(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator/(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator/(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x) { return __x; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x) { return complex<_Tp>(-__x.real(), -__x.imag()); } template<typename _Tp> inline bool operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() == __y.real() && __x.imag() == __y.imag(); } template<typename _Tp> inline bool operator==(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() == __y && __x.imag() == _Tp(); } template<typename _Tp> inline bool operator==(const _Tp& __x, const complex<_Tp>& __y) { return __x == __y.real() && _Tp() == __y.imag(); } template<typename _Tp> inline bool operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() != __y.real() || __x.imag() != __y.imag(); } template<typename _Tp> inline bool operator!=(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() != __y || __x.imag() != _Tp(); } template<typename _Tp> inline bool operator!=(const _Tp& __x, const complex<_Tp>& __y) { return __x != __y.real() || _Tp() != __y.imag(); } template<typename _Tp> std::istream& operator>>(std::istream& __is, complex<_Tp>& __x) { _Tp __re_x, __im_x; char __ch; __is >> __ch; if (__ch == '(') { __is >> __re_x >> __ch; if (__ch == ',') { __is >> __im_x >> __ch; if (__ch == ')') __x = complex<_Tp>(__re_x, __im_x); else __is.setstate(ios_base::failbit); } else if (__ch == ')') __x = complex<_Tp>(__re_x, _Tp(0)); else __is.setstate(ios_base::failbit); } else { __is.putback(__ch); __is >> __re_x; __x = complex<_Tp>(__re_x, _Tp(0)); } return __is; } template<typename _Tp> std::ostream& operator<<(std::ostream& __os, const complex<_Tp>& __x) { std::ostringstream __s; __s.flags(__os.flags());#if defined __GNUC__ && (__GNUC__ > 2) __s.imbue(__os.getloc());#endif __s.precision(__os.precision()); __s << '(' << __x.real() << ',' << __x.imag() << ')'; return __os << __s.str(); } // Values template<typename _Tp> inline _Tp real(const complex<_Tp>& __z) { return __z.real(); } template<typename _Tp> inline _Tp imag(const complex<_Tp>& __z) { return __z.imag(); }#ifndef DOXYGEN_IGNORE template<typename _Tp> inline _Tp abs(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); const _Tp __s = std::max(std::abs(__x), std::abs(__y)); if (__s == _Tp()) // well ... return __s; __x /= __s; __y /= __s; return __s * sqrt(__x * __x + __y * __y); } template<typename _Tp> inline _Tp arg(const complex<_Tp>& __z) { return atan2(__z.imag(), __z.real()); } // 26.2.7/5: norm(__z) returns the squared magintude of __z. // As defined, norm() is -not- a norm is the common mathematical // sens used in numerics. The helper class _Norm_helper<> tries to // distinguish between builtin floating point and the rest, so as // to deliver an answer as close as possible to the real value. template<bool> struct _Norm_helper { template<typename _Tp> static inline _Tp _S_do_it(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return __x * __x + __y * __y; } }; template<> struct _Norm_helper<true> { template<typename _Tp> static inline _Tp _S_do_it(const complex<_Tp>& __z) { _Tp __res = abs(__z); return __res * __res; } }; template<typename _Tp> inline _Tp norm(const complex<_Tp>& __z) { return _Norm_helper<#if LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H std::__is_floating<_Tp>::# if defined __GNUC__ && (__GNUC__ > 3) // This member name is for gcc>=4.0.0 __value# else // This member name is for gcc 3.x.x _M_type # endif // __GNUC__ > 3 && !# ifdef _GLIBCXX_FAST_MATH // This macro name is new in gcc3.4 _GLIBCXX_FAST_MATH# else // This macro name is for gcc3.3 _GLIBCPP_FAST_MATH# endif // _GLIBCXX_FAST_MATH#else // LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H false#endif // LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H >::_S_do_it(__z); }#endif // DOXYGEN_IGNORE // much deleted...#if defined __GNUC__ && (__GNUC__ > 2) // 26.2.3 complex specializations // complex<double> specialization template<> class complex<double> { public: typedef double value_type; complex(double =0.0, double =0.0);#ifdef _GLIBCPP_BUGGY_COMPLEX complex(const complex& __z) : _M_value(__z._M_value) { }#endif // _GLIBCPP_BUGGY_COMPLEX complex(const complex<float>&); explicit complex(const complex<long double>&); // CS: Additionally add conversion *from* stdc++ type. complex(const std::complex<double>&); // CS: end double real() const; double imag() const; complex<double>& operator=(double); complex<double>& operator+=(double); complex<double>& operator-=(double); complex<double>& operator*=(double); complex<double>& operator/=(double); // The compiler will synthetize this, efficiently. // complex& operator= (const complex&); template<typename _Tp> complex<double>& operator=(const complex<_Tp>&); template<typename _Tp> complex<double>& operator+=(const complex<_Tp>&); template<typename _Tp> complex<double>& operator-=(const complex<_Tp>&); template<typename _Tp> complex<double>& operator*=(const complex<_Tp>&); template<typename _Tp> complex<double>& operator/=(const complex<_Tp>&); // CS: Additionally add converstions to old C-style complex type complex(COMPLEX); operator COMPLEX() const; COMPLEX toCOMPLEX() const; operator std::complex<double>() const; // CS: end additions private: typedef __complex__ double _ComplexT; _ComplexT _M_value; complex(_ComplexT __z) : _M_value(__z) { } friend class complex<float>; friend class complex<long double>; }; inline double complex<double>::real() const { return __real__ _M_value; } inline double complex<double>::imag() const { return __imag__ _M_value; } inline complex<double>::complex(double __r, double __i) { __real__ _M_value = __r; __imag__ _M_value = __i; } // CS: addition inline complex<double>::complex(const std::complex<double>&__s) { __real__ _M_value = __s.real(); __imag__ _M_value = __s.imag(); } // CS: end addition inline complex<double>& complex<double>::operator=(double __d) { __real__ _M_value = __d; __imag__ _M_value = 0.0; return *this; } inline complex<double>& complex<double>::operator+=(double __d) { __real__ _M_value += __d; return *this; } inline complex<double>& complex<double>::operator-=(double __d) { __real__ _M_value -= __d; return *this; } inline complex<double>& complex<double>::operator*=(double __d) { _M_value *= __d; return *this; } inline complex<double>& complex<double>::operator/=(double __d) { _M_value /= __d; return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator=(const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator+=(const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator-=(const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.imag(); return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator*=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator/=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // CS: Additionally add converstions to old C-style complex type inline complex<double>::complex(COMPLEX __c) { __real__ _M_value = __c.r; __imag__ _M_value = __c.i; } inline complex<double>::operator COMPLEX() const { return toCOMPLEX(); } inline COMPLEX complex<double>::toCOMPLEX() const { COMPLEX r; r.r = real(); r.i = imag(); return r; } inline complex<double>::operator std::complex<double>() const { return std::complex<double>(real(), imag()); } // CS: end #endif // (__GNUC__ > 2) // much deleted... //@}} // namespace std#endif /* _CPP_COMPLEX */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -