⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lacomplex

📁 LAPACK++ (Linear Algebra PACKage in C++) is a software library for numerical linear algebra that sol
💻
📖 第 1 页 / 共 2 页
字号:
  template<typename _Tp>    inline complex<_Tp>    operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) /= __y; }      template<typename _Tp>    inline complex<_Tp>    operator/(const complex<_Tp>& __x, const _Tp& __y)    { return complex<_Tp> (__x) /= __y; }  template<typename _Tp>    inline complex<_Tp>    operator/(const _Tp& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) /= __y; }  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x)    { return __x; }  template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x)    {  return complex<_Tp>(-__x.real(), -__x.imag()); }  template<typename _Tp>    inline bool    operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __x.real() == __y.real() && __x.imag() == __y.imag(); }  template<typename _Tp>    inline bool    operator==(const complex<_Tp>& __x, const _Tp& __y)    { return __x.real() == __y && __x.imag() == _Tp(); }  template<typename _Tp>    inline bool    operator==(const _Tp& __x, const complex<_Tp>& __y)    { return __x == __y.real() && _Tp() == __y.imag(); }  template<typename _Tp>    inline bool    operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __x.real() != __y.real() || __x.imag() != __y.imag(); }  template<typename _Tp>    inline bool    operator!=(const complex<_Tp>& __x, const _Tp& __y)    { return __x.real() != __y || __x.imag() != _Tp(); }  template<typename _Tp>    inline bool    operator!=(const _Tp& __x, const complex<_Tp>& __y)    { return __x != __y.real() || _Tp() != __y.imag(); }  template<typename _Tp>    std::istream&    operator>>(std::istream& __is, complex<_Tp>& __x)    {      _Tp __re_x, __im_x;      char __ch;      __is >> __ch;      if (__ch == '(') 	{	  __is >> __re_x >> __ch;	  if (__ch == ',') 	    {	      __is >> __im_x >> __ch;	      if (__ch == ')') 		__x = complex<_Tp>(__re_x, __im_x);	      else		__is.setstate(ios_base::failbit);	    }	  else if (__ch == ')') 	    __x = complex<_Tp>(__re_x, _Tp(0));	  else	    __is.setstate(ios_base::failbit);	}      else 	{	  __is.putback(__ch);	  __is >> __re_x;	  __x = complex<_Tp>(__re_x, _Tp(0));	}      return __is;    }  template<typename _Tp>    std::ostream&    operator<<(std::ostream& __os, const complex<_Tp>& __x)    {      std::ostringstream __s;      __s.flags(__os.flags());#if defined __GNUC__ && (__GNUC__ > 2)      __s.imbue(__os.getloc());#endif      __s.precision(__os.precision());      __s << '(' << __x.real() << ',' << __x.imag() << ')';      return __os << __s.str();    }  // Values  template<typename _Tp>    inline _Tp    real(const complex<_Tp>& __z)    { return __z.real(); }      template<typename _Tp>    inline _Tp    imag(const complex<_Tp>& __z)    { return __z.imag(); }#ifndef DOXYGEN_IGNORE  template<typename _Tp>    inline _Tp    abs(const complex<_Tp>& __z)    {      _Tp __x = __z.real();      _Tp __y = __z.imag();      const _Tp __s = std::max(std::abs(__x), std::abs(__y));      if (__s == _Tp())  // well ...        return __s;      __x /= __s;       __y /= __s;      return __s * sqrt(__x * __x + __y * __y);    }  template<typename _Tp>    inline _Tp    arg(const complex<_Tp>& __z)    { return atan2(__z.imag(), __z.real()); }  // 26.2.7/5: norm(__z) returns the squared magintude of __z.  //     As defined, norm() is -not- a norm is the common mathematical  //     sens used in numerics.  The helper class _Norm_helper<> tries to  //     distinguish between builtin floating point and the rest, so as  //     to deliver an answer as close as possible to the real value.  template<bool>    struct _Norm_helper    {      template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {          const _Tp __x = __z.real();          const _Tp __y = __z.imag();          return __x * __x + __y * __y;        }    };  template<>    struct _Norm_helper<true>    {      template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {          _Tp __res = abs(__z);          return __res * __res;        }    };    template<typename _Tp>    inline _Tp    norm(const complex<_Tp>& __z)    {	return _Norm_helper<#if LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H	    std::__is_floating<_Tp>::#  if defined __GNUC__ && (__GNUC__ > 3)	    // This member name is for gcc>=4.0.0	    __value#  else	    // This member name is for gcc 3.x.x	    _M_type #  endif // __GNUC__ > 3	    && !#  ifdef _GLIBCXX_FAST_MATH	    // This macro name is new in gcc3.4	    _GLIBCXX_FAST_MATH#  else	    // This macro name is for gcc3.3	    _GLIBCPP_FAST_MATH#  endif // _GLIBCXX_FAST_MATH#else // LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H	    false#endif // LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H	    >::_S_do_it(__z);    }#endif // DOXYGEN_IGNORE  // much deleted...#if defined __GNUC__ && (__GNUC__ > 2)  // 26.2.3  complex specializations  // complex<double> specialization  template<> class complex<double>  {  public:    typedef double value_type;    complex(double  =0.0, double =0.0);#ifdef _GLIBCPP_BUGGY_COMPLEX    complex(const complex& __z) : _M_value(__z._M_value) { }#endif // _GLIBCPP_BUGGY_COMPLEX    complex(const complex<float>&);    explicit complex(const complex<long double>&);    // CS: Additionally add conversion *from* stdc++ type.    complex(const std::complex<double>&);    // CS: end            double real() const;    double imag() const;            complex<double>& operator=(double);    complex<double>& operator+=(double);    complex<double>& operator-=(double);    complex<double>& operator*=(double);    complex<double>& operator/=(double);    // The compiler will synthetize this, efficiently.    // complex& operator= (const complex&);    template<typename _Tp>      complex<double>& operator=(const complex<_Tp>&);    template<typename _Tp>      complex<double>& operator+=(const complex<_Tp>&);    template<typename _Tp>      complex<double>& operator-=(const complex<_Tp>&);    template<typename _Tp>      complex<double>& operator*=(const complex<_Tp>&);    template<typename _Tp>      complex<double>& operator/=(const complex<_Tp>&);    // CS: Additionally add converstions to old C-style complex type    complex(COMPLEX);    operator COMPLEX() const;    COMPLEX toCOMPLEX() const;    operator std::complex<double>() const;    // CS: end additions  private:    typedef __complex__ double _ComplexT;    _ComplexT _M_value;    complex(_ComplexT __z) : _M_value(__z) { }            friend class complex<float>;    friend class complex<long double>;  };  inline double  complex<double>::real() const  { return __real__ _M_value; }  inline double  complex<double>::imag() const  { return __imag__ _M_value; }  inline  complex<double>::complex(double __r, double __i)  {    __real__ _M_value = __r;    __imag__ _M_value = __i;  }    // CS: addition  inline  complex<double>::complex(const std::complex<double>&__s)  {    __real__ _M_value = __s.real();    __imag__ _M_value = __s.imag();  }  // CS: end addition  inline complex<double>&  complex<double>::operator=(double __d)  {    __real__ _M_value = __d;    __imag__ _M_value = 0.0;    return *this;  }  inline complex<double>&  complex<double>::operator+=(double __d)  {    __real__ _M_value += __d;    return *this;  }  inline complex<double>&  complex<double>::operator-=(double __d)  {    __real__ _M_value -= __d;    return *this;  }  inline complex<double>&  complex<double>::operator*=(double __d)  {    _M_value *= __d;    return *this;  }  inline complex<double>&  complex<double>::operator/=(double __d)  {    _M_value /= __d;    return *this;  }  template<typename _Tp>    inline complex<double>&    complex<double>::operator=(const complex<_Tp>& __z)    {      __real__ _M_value = __z.real();      __imag__ _M_value = __z.imag();      return *this;    }      template<typename _Tp>    inline complex<double>&    complex<double>::operator+=(const complex<_Tp>& __z)    {      __real__ _M_value += __z.real();      __imag__ _M_value += __z.imag();      return *this;    }  template<typename _Tp>    inline complex<double>&    complex<double>::operator-=(const complex<_Tp>& __z)    {      __real__ _M_value -= __z.real();      __imag__ _M_value -= __z.imag();      return *this;    }  template<typename _Tp>    inline complex<double>&    complex<double>::operator*=(const complex<_Tp>& __z)    {      _ComplexT __t;      __real__ __t = __z.real();      __imag__ __t = __z.imag();      _M_value *= __t;      return *this;    }  template<typename _Tp>    inline complex<double>&    complex<double>::operator/=(const complex<_Tp>& __z)    {      _ComplexT __t;      __real__ __t = __z.real();      __imag__ __t = __z.imag();      _M_value /= __t;      return *this;    }  // CS: Additionally add converstions to old C-style complex type  inline  complex<double>::complex(COMPLEX __c)  {    __real__ _M_value = __c.r;    __imag__ _M_value = __c.i;  }  inline  complex<double>::operator COMPLEX() const  {    return toCOMPLEX();  }  inline COMPLEX  complex<double>::toCOMPLEX() const  {    COMPLEX r;    r.r = real();    r.i = imag();    return r;  }  inline  complex<double>::operator std::complex<double>() const  {    return std::complex<double>(real(), imag());  }  // CS: end #endif // (__GNUC__ > 2)  // much deleted...  //@}} // namespace std#endif	/* _CPP_COMPLEX */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -