⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lacomplex

📁 LAPACK++ (Linear Algebra PACKage in C++) is a software library for numerical linear algebra that sol
💻
📖 第 1 页 / 共 2 页
字号:
// -*-c++-*- /***************************************************************** * file lacomplex Locally modified copy of stdc++'s file complex *  ------------------- * begin                : 2004-01-14 * copyright            : (C) 2004 by Christian Stimming * email                : stimming@tuhh.de * * (Almost) All changes by Christian are marked with "CS:".***************************************************************************/// The template and inlines for the -*- C++ -*- complex number classes.// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library.  This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING.  If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction.  Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License.  This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.//// ISO C++ 14882: 26.2  Complex Numbers// Note: this is not a conforming implementation.// Initially implemented by Ulrich Drepper <drepper@cygnus.com>// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>///** \file lacomplex  * \brief Complex data type that can be used from the application. *  * This file has been heavily copied from the Standard *  C++ Library header <\c complex >. See the explanations at la::complex *  for the reasons. */#ifndef LACOMPLEX_CPPHEADER#define LACOMPLEX_CPPHEADER//#pragma GCC system_header#if LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H// This is for gcc >= 3.0.0#  include <bits/c++config.h>#  include <bits/cpp_type_traits.h>#endif // LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H#include <cmath>#include <iosfwd>#include <sstream>#include <complex>#if defined __GNUC__ && (__GNUC__ < 3)// This is for gcc2.95#  include <iostream>#endif/** \brief Namespace of Lapack++. * * This namespace defines the complex data type that can be used * from the application, and also various matrix template * functions. *  * This namespace defines the complex data type that is used for * passing scalars in and out of LAPACK++. It is a copy of the \c * std::complex<double> and it includes automatic conversion from and * to \c std::complex<double>. Additionally it includes automatic * conversion from and to the internal FORTRAN type \ref COMPLEX, * which is why this class is needed to pass complex values into * Lapack++. * * This file has been heavily copied from the Standard C++ Library * header <\c complex >. See the explanations at la::complex for the * reasons. */namespace la{  /** \name Functions for Lapack++ complex number type */  //@{#if LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H  using std::ios_base;#else  typedef std::ios ios_base;#endif  // Forward declarations  template<typename _Tp> class complex;  //template<> class complex<float>;#if defined __GNUC__ && (__GNUC__ > 2)  template<> class complex<double>;#endif  //template<> class complex<long double>;  template<typename _Tp> _Tp abs(const complex<_Tp>&);  template<typename _Tp> _Tp arg(const complex<_Tp>&);  template<typename _Tp> _Tp norm(const complex<_Tp>&);  // Transcendentals:        /** @brief Complex data type that can be used from the application. * * This type is used for passing scalars in and out of LAPACK++. It is * a copy of the \c std::complex<double> and it includes automatic * conversion from and to \c std::complex<double>. Additionally it * includes automatic conversion from and to the internal FORTRAN type * \ref COMPLEX, which is why this class is needed to pass complex * values into Lapack++. * * Again: If you get errors when passing a \c std::complex<double> * into Lapack++, then you first need to convert your \c * std::complex<double> into this \c LaComplex value. */  // 26.2.2  Primary template class complex  template<typename _Tp>    class complex    {    public:      typedef _Tp value_type;            complex(const _Tp& = _Tp(), const _Tp & = _Tp());      // Let's the compiler synthetize the copy constructor         // complex (const complex<_Tp>&);      template<typename _Up>        complex(const complex<_Up>&);      // CS: Additionally add conversion *from* stdc++ type.      complex(const std::complex<_Tp>&);      // CS: end              _Tp real() const;      _Tp imag() const;      complex<_Tp>& operator=(const _Tp&);      complex<_Tp>& operator+=(const _Tp&);      complex<_Tp>& operator-=(const _Tp&);      complex<_Tp>& operator*=(const _Tp&);      complex<_Tp>& operator/=(const _Tp&);      // Let's the compiler synthetize the      // copy and assignment operator      // complex<_Tp>& operator= (const complex<_Tp>&);      template<typename _Up>        complex<_Tp>& operator=(const complex<_Up>&);      template<typename _Up>        complex<_Tp>& operator+=(const complex<_Up>&);      template<typename _Up>        complex<_Tp>& operator-=(const complex<_Up>&);      template<typename _Up>        complex<_Tp>& operator*=(const complex<_Up>&);      template<typename _Up>        complex<_Tp>& operator/=(const complex<_Up>&);      // CS: Additionally add converstions to old C-style complex type      complex(COMPLEX);      operator COMPLEX() const;      COMPLEX toCOMPLEX() const;      operator std::complex<_Tp>() const;      // CS: end additions    private:      _Tp _M_real, _M_imag;    };  template<typename _Tp>    inline _Tp    complex<_Tp>::real() const { return _M_real; }  template<typename _Tp>    inline _Tp    complex<_Tp>::imag() const { return _M_imag; }  template<typename _Tp>    inline     complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)    : _M_real(__r), _M_imag(__i) { }  template<typename _Tp>    template<typename _Up>    inline     complex<_Tp>::complex(const complex<_Up>& __z)    : _M_real(__z.real()), _M_imag(__z.imag()) { }          // CS: addition  template<typename _Tp>    inline     complex<_Tp>::complex(const std::complex<_Tp>& __z)    : _M_real(__z.real()), _M_imag(__z.imag()) { }  // CS: end addition  template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator=(const _Tp& __t)    {     _M_real = __t;     _M_imag = _Tp();     return *this;    }   // 26.2.5/1  template<typename _Tp>    inline complex<_Tp>&    complex<_Tp>::operator+=(const _Tp& __t)    {      _M_real += __t;      return *this;    }  // 26.2.5/3  template<typename _Tp>    inline complex<_Tp>&    complex<_Tp>::operator-=(const _Tp& __t)    {      _M_real -= __t;      return *this;    }  // 26.2.5/5  template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator*=(const _Tp& __t)    {      _M_real *= __t;      _M_imag *= __t;      return *this;    }  // 26.2.5/7  template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator/=(const _Tp& __t)    {      _M_real /= __t;      _M_imag /= __t;      return *this;    }  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator=(const complex<_Up>& __z)    {      _M_real = __z.real();      _M_imag = __z.imag();      return *this;    }  // 26.2.5/9  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator+=(const complex<_Up>& __z)    {      _M_real += __z.real();      _M_imag += __z.imag();      return *this;    }  // 26.2.5/11  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator-=(const complex<_Up>& __z)    {      _M_real -= __z.real();      _M_imag -= __z.imag();      return *this;    }  // 26.2.5/13  // XXX: This is a grammar school implementation.  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator*=(const complex<_Up>& __z)    {      const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();      _M_imag = _M_real * __z.imag() + _M_imag * __z.real();      _M_real = __r;      return *this;    }  // 26.2.5/15  // XXX: This is a grammar school implementation.  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator/=(const complex<_Up>& __z)    {      const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();      const _Tp __n = norm(__z);      _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;      _M_real = __r / __n;      return *this;    }  // CS: Additionally add converstions to old C-style complex type  template<typename _Tp>  inline  complex<_Tp>::complex(COMPLEX c)    : _M_real(c.r), _M_imag(c.i) { }  template<typename _Tp>  inline  complex<_Tp>::operator COMPLEX() const  {    return toCOMPLEX();  }  template<typename _Tp>  inline COMPLEX  complex<_Tp>::toCOMPLEX() const  {    COMPLEX r;    r.r = _M_real;    r.i = _M_imag;    return r;  }  template<typename _Tp>  inline  complex<_Tp>::operator std::complex<_Tp>() const  {    return std::complex<_Tp>(real(), imag());  }  // CS: end   // Operators:  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) += __y; }  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x, const _Tp& __y)    { return complex<_Tp> (__x) += __y; }  template<typename _Tp>    inline complex<_Tp>    operator+(const _Tp& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__y) += __x; }  template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) -= __y; }      template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x, const _Tp& __y)    { return complex<_Tp> (__x) -= __y; }  template<typename _Tp>    inline complex<_Tp>    operator-(const _Tp& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) -= __y; }  template<typename _Tp>    inline complex<_Tp>    operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) *= __y; }  template<typename _Tp>    inline complex<_Tp>    operator*(const complex<_Tp>& __x, const _Tp& __y)    { return complex<_Tp> (__x) *= __y; }  template<typename _Tp>    inline complex<_Tp>    operator*(const _Tp& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__y) *= __x; }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -