📄 lacomplex
字号:
// -*-c++-*- /***************************************************************** * file lacomplex Locally modified copy of stdc++'s file complex * ------------------- * begin : 2004-01-14 * copyright : (C) 2004 by Christian Stimming * email : stimming@tuhh.de * * (Almost) All changes by Christian are marked with "CS:".***************************************************************************/// The template and inlines for the -*- C++ -*- complex number classes.// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.//// ISO C++ 14882: 26.2 Complex Numbers// Note: this is not a conforming implementation.// Initially implemented by Ulrich Drepper <drepper@cygnus.com>// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>///** \file lacomplex * \brief Complex data type that can be used from the application. * * This file has been heavily copied from the Standard * C++ Library header <\c complex >. See the explanations at la::complex * for the reasons. */#ifndef LACOMPLEX_CPPHEADER#define LACOMPLEX_CPPHEADER//#pragma GCC system_header#if LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H// This is for gcc >= 3.0.0# include <bits/c++config.h># include <bits/cpp_type_traits.h>#endif // LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H#include <cmath>#include <iosfwd>#include <sstream>#include <complex>#if defined __GNUC__ && (__GNUC__ < 3)// This is for gcc2.95# include <iostream>#endif/** \brief Namespace of Lapack++. * * This namespace defines the complex data type that can be used * from the application, and also various matrix template * functions. * * This namespace defines the complex data type that is used for * passing scalars in and out of LAPACK++. It is a copy of the \c * std::complex<double> and it includes automatic conversion from and * to \c std::complex<double>. Additionally it includes automatic * conversion from and to the internal FORTRAN type \ref COMPLEX, * which is why this class is needed to pass complex values into * Lapack++. * * This file has been heavily copied from the Standard C++ Library * header <\c complex >. See the explanations at la::complex for the * reasons. */namespace la{ /** \name Functions for Lapack++ complex number type */ //@{#if LAPACKPP_HAVE_BITS_CPP_TYPE_TRAITS_H using std::ios_base;#else typedef std::ios ios_base;#endif // Forward declarations template<typename _Tp> class complex; //template<> class complex<float>;#if defined __GNUC__ && (__GNUC__ > 2) template<> class complex<double>;#endif //template<> class complex<long double>; template<typename _Tp> _Tp abs(const complex<_Tp>&); template<typename _Tp> _Tp arg(const complex<_Tp>&); template<typename _Tp> _Tp norm(const complex<_Tp>&); // Transcendentals: /** @brief Complex data type that can be used from the application. * * This type is used for passing scalars in and out of LAPACK++. It is * a copy of the \c std::complex<double> and it includes automatic * conversion from and to \c std::complex<double>. Additionally it * includes automatic conversion from and to the internal FORTRAN type * \ref COMPLEX, which is why this class is needed to pass complex * values into Lapack++. * * Again: If you get errors when passing a \c std::complex<double> * into Lapack++, then you first need to convert your \c * std::complex<double> into this \c LaComplex value. */ // 26.2.2 Primary template class complex template<typename _Tp> class complex { public: typedef _Tp value_type; complex(const _Tp& = _Tp(), const _Tp & = _Tp()); // Let's the compiler synthetize the copy constructor // complex (const complex<_Tp>&); template<typename _Up> complex(const complex<_Up>&); // CS: Additionally add conversion *from* stdc++ type. complex(const std::complex<_Tp>&); // CS: end _Tp real() const; _Tp imag() const; complex<_Tp>& operator=(const _Tp&); complex<_Tp>& operator+=(const _Tp&); complex<_Tp>& operator-=(const _Tp&); complex<_Tp>& operator*=(const _Tp&); complex<_Tp>& operator/=(const _Tp&); // Let's the compiler synthetize the // copy and assignment operator // complex<_Tp>& operator= (const complex<_Tp>&); template<typename _Up> complex<_Tp>& operator=(const complex<_Up>&); template<typename _Up> complex<_Tp>& operator+=(const complex<_Up>&); template<typename _Up> complex<_Tp>& operator-=(const complex<_Up>&); template<typename _Up> complex<_Tp>& operator*=(const complex<_Up>&); template<typename _Up> complex<_Tp>& operator/=(const complex<_Up>&); // CS: Additionally add converstions to old C-style complex type complex(COMPLEX); operator COMPLEX() const; COMPLEX toCOMPLEX() const; operator std::complex<_Tp>() const; // CS: end additions private: _Tp _M_real, _M_imag; }; template<typename _Tp> inline _Tp complex<_Tp>::real() const { return _M_real; } template<typename _Tp> inline _Tp complex<_Tp>::imag() const { return _M_imag; } template<typename _Tp> inline complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) : _M_real(__r), _M_imag(__i) { } template<typename _Tp> template<typename _Up> inline complex<_Tp>::complex(const complex<_Up>& __z) : _M_real(__z.real()), _M_imag(__z.imag()) { } // CS: addition template<typename _Tp> inline complex<_Tp>::complex(const std::complex<_Tp>& __z) : _M_real(__z.real()), _M_imag(__z.imag()) { } // CS: end addition template<typename _Tp> complex<_Tp>& complex<_Tp>::operator=(const _Tp& __t) { _M_real = __t; _M_imag = _Tp(); return *this; } // 26.2.5/1 template<typename _Tp> inline complex<_Tp>& complex<_Tp>::operator+=(const _Tp& __t) { _M_real += __t; return *this; } // 26.2.5/3 template<typename _Tp> inline complex<_Tp>& complex<_Tp>::operator-=(const _Tp& __t) { _M_real -= __t; return *this; } // 26.2.5/5 template<typename _Tp> complex<_Tp>& complex<_Tp>::operator*=(const _Tp& __t) { _M_real *= __t; _M_imag *= __t; return *this; } // 26.2.5/7 template<typename _Tp> complex<_Tp>& complex<_Tp>::operator/=(const _Tp& __t) { _M_real /= __t; _M_imag /= __t; return *this; } template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator=(const complex<_Up>& __z) { _M_real = __z.real(); _M_imag = __z.imag(); return *this; } // 26.2.5/9 template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator+=(const complex<_Up>& __z) { _M_real += __z.real(); _M_imag += __z.imag(); return *this; } // 26.2.5/11 template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator-=(const complex<_Up>& __z) { _M_real -= __z.real(); _M_imag -= __z.imag(); return *this; } // 26.2.5/13 // XXX: This is a grammar school implementation. template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator*=(const complex<_Up>& __z) { const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); _M_real = __r; return *this; } // 26.2.5/15 // XXX: This is a grammar school implementation. template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator/=(const complex<_Up>& __z) { const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); const _Tp __n = norm(__z); _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n; _M_real = __r / __n; return *this; } // CS: Additionally add converstions to old C-style complex type template<typename _Tp> inline complex<_Tp>::complex(COMPLEX c) : _M_real(c.r), _M_imag(c.i) { } template<typename _Tp> inline complex<_Tp>::operator COMPLEX() const { return toCOMPLEX(); } template<typename _Tp> inline COMPLEX complex<_Tp>::toCOMPLEX() const { COMPLEX r; r.r = _M_real; r.i = _M_imag; return r; } template<typename _Tp> inline complex<_Tp>::operator std::complex<_Tp>() const { return std::complex<_Tp>(real(), imag()); } // CS: end // Operators: template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) += __y; } template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) += __y; } template<typename _Tp> inline complex<_Tp> operator+(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__y) += __x; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator-(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator*(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) *= __y; } template<typename _Tp> inline complex<_Tp> operator*(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) *= __y; } template<typename _Tp> inline complex<_Tp> operator*(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__y) *= __x; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -