⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blas2pp.h

📁 LAPACK++ (Linear Algebra PACKage in C++) is a software library for numerical linear algebra that sol
💻 H
字号:
// -*-C++-*- // Copyright (C) 2004 // Christian Stimming <stimming@tuhh.de>// This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; either version 2, or (at// your option) any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Lesser General Public License for more details.// You should have received a copy of the GNU Lesser General Public License along// with this library; see the file COPYING.  If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.//      LAPACK++ (V. 1.1)//      (C) 1992-1996 All Rights Reserved./** @file blas2pp.h * @brief Blas Level-2 Routines: Vector-Matrix Operations */#ifndef _BLAS2_PP_H_#define _BLAS2_PP_H_#include "blas2.h"#include "lafnames.h"#include "arch.h" // needed for DLLIMPORT#include LA_GEN_MAT_DOUBLE_H#include LA_VECTOR_DOUBLE_H#ifdef LA_COMPLEX_SUPPORT# include LA_GEN_MAT_COMPLEX_H# include LA_VECTOR_COMPLEX_H#endif/** @name Real-valued general matrices and vectors *///@{/** Perform the matrix-vector operation y := alpha*A'*x + beta*y */DLLIMPORTvoid Blas_Mat_Trans_Vec_Mult(const LaGenMatDouble &A, 			     const LaVectorDouble &dx, 			     LaVectorDouble &dy,			     double alpha = 1.0, double beta = 0.0);/** Perform the matrix-vector operation y := alpha*A*x + beta*y */DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaGenMatDouble &A, 		       const LaVectorDouble &dx, 		       LaVectorDouble &dy, 		       double alpha = 1.0, double beta = 0.0);/** Perform the rank 1 operation A := alpha*dx*dy' + A */DLLIMPORTvoid Blas_R1_Update(LaGenMatDouble &A, const LaVectorDouble &dx, 		    const LaVectorDouble &dy, double alpha = 1.0);//@}#ifdef LA_COMPLEX_SUPPORT/** @name Complex-valued matrices and vectors *///@{/** Perform the matrix-vector operation y := alpha*A*x + beta*y */DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaGenMatComplex &A, 		       const LaVectorComplex &dx, 		       LaVectorComplex &dy, 		       LaComplex alpha = 1.0, LaComplex beta = 0.0);/** Perform the matrix-vector operation y := alpha*A'*x + beta*y */DLLIMPORTvoid Blas_Mat_Trans_Vec_Mult(const LaGenMatComplex &A, 			     const LaVectorComplex &dx, 			     LaVectorComplex &dy,			     LaComplex alpha = 1.0, LaComplex beta = 0.0);/** Perform the rank 1 operation A := alpha*dx*dy' + A */DLLIMPORTvoid Blas_R1_Update(LaGenMatComplex &A, const LaVectorComplex &dx, 		    const LaVectorComplex &dy, LaComplex alpha = 1.0);//@}#endif // LA_COMPLEX_SUPPORT#ifdef _LA_SYMM_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaSymmMatDouble &A, const LaVectorDouble &dx, 		       LaVectorDouble &dy, 		       double alpha = 1.0, double beta = 1.0);DLLIMPORTvoid Blas_R1_Update(LaSymmMatDouble &A, const LaVectorDouble &dx,		    double alpha = 1.0);DLLIMPORTvoid Blas_R2_Update(LaSymmMatDouble &A, const LaVectorDouble &dx, 		    const LaVectorDouble &dy, double alpha = 1.0);#endif#ifdef _LA_SYMM_BAND_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaSymmBandMatDouble &A, const LaVectorDouble &dx, 		       LaVectorDouble &dy, 		       double alpha = 1.0, double beta = 1.0);#endif#ifdef _LA_SPD_MAT_DOUBLE_H_ DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaSpdMatDouble &AP, const LaVectorDouble &dx, 		       LaVectorDouble &dy, 		       double alpha = 1.0, double beta = 1.0);DLLIMPORTvoid Blas_R1_Update(LaSpdMatDouble &AP, const LaVectorDouble &dx,		    double alpha = 1.0);DLLIMPORTvoid Blas_R2_Update(LaSpdMatDouble &AP, const LaVectorDouble &dx, 		    const LaVectorDouble &dy, double alpha = 1.0);#endif#ifdef _LA_BAND_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaBandMatDouble &A, const LaVectorDouble &dx, 		       LaVectorDouble &dy, 		       double alpha = 1.0, double beta = 1.0);#endif#ifdef _LA_LOWER_TRIANG_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaLowerTriangMatDouble &A, LaVectorDouble &dx);#endif#ifdef _LA_UPPER_TRIANG_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaUpperTriangMatDouble &A, LaVectorDouble &dx);#endif#ifdef _LA_UNIT_LOWER_TRIANG_MAT_DOUBLE_H_ DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaUnitLowerTriangMatDouble &A, 		       LaVectorDouble &dx);#endif#ifdef _LA_LOWER_TRIANG_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Solve(LaLowerTriangMatDouble &A, LaVectorDouble &dx);#endif#ifdef _LA_UNIT_UPPER_TRIANG_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Mult(const LaUnitUpperTriangMatDouble &A, 		       LaVectorDouble &dx);#endif#ifdef _LA_UPPER_TRIANG_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Solve(LaUpperTriangMatDouble &A, LaVectorDouble &dx);#endif#ifdef _LA_UNIT_LOWER_TRIANG_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Solve(LaUnitLowerTriangMatDouble &A, 			LaVectorDouble &dx);#endif#ifdef _LA_UNIT_UPPER_TRIANG_MAT_DOUBLE_H_DLLIMPORTvoid Blas_Mat_Vec_Solve(LaUnitUpperTriangMatDouble &A, LaVectorDouble &dx);#endif#endif     //_BLAS2_PP_H_

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -