📄 lavc.h
字号:
// -*-C++-*- // Copyright (C) 2004 // Christian Stimming <stimming@tuhh.de>// This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; either version 2, or (at// your option) any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU Lesser General Public License for more details.// You should have received a copy of the GNU Lesser General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// LAPACK++ (V. 1.1)// (C) 1992-1996 All Rights Reserved./** @file * @brief Complex-valued vector */#ifndef _LA_VECTOR_COMPLEX_H_#define _LA_VECTOR_COMPLEX_H_#include "lafnames.h"#include LA_GEN_MAT_COMPLEX_H/** \brief Complex vector class. * * A vector is simply an nx1 or 1xn, matrix, only that it can be * constructed and accessed by a single dimension. * * Multiplication of this vector should be done by the functions in * blas1pp.h and blas2pp.h, e.g. Blas_H_Dot_Prod() or * Blas_Add_Mult(). (There are also some operators in blaspp.h, but we * advice against them because they will always allocate a new matrix * for the result even though you usually already have a matrix at * hand for writing the result into.) Transpositions of vectors * usually do not have to be calculated explicitly, but you can * directly use the different multiplication functions that will use * this vector as a transposed one, e.g. Blas_R1_Update(). * */class LaVectorComplex: public LaGenMatComplex{ public: /** @name Declaration */ //@{ /** Constructs a column vector of length 0 (null). */ LaVectorComplex(); /** Constructs a column vector of length n */ LaVectorComplex(int n); /** Constructs a vector of size \f$m\times n\f$. One of the two * dimensions must be one! */ LaVectorComplex(int m, int n); /** Constructs a column vector of length n by copying the values * from a one-dimensional C array of length n. */ LaVectorComplex(COMPLEX* v, int n); /** Constructs an \f$m\times n\f$ vector by copying the values * from a one-dimensional C array of length mn. One of the two * dimensions must be one! */ LaVectorComplex(COMPLEX*, int m, int n); /** Create a new vector from an existing matrix by copying. The * given matrix s must be a vector, i.e. one of its dimensions * must be one! */ LaVectorComplex(const LaGenMatComplex&); //@} /** @name Information */ //@{ /** Returns the length n of this vector. */ inline int size() const; /** Returns the distance between memory locations (in terms of * number of elements) between consecutive elements along * dimension d. For example, if \c inc(d) returns 1, then * elements along the dth dimension are contiguous in * memory. */ inline int inc() const; /** If the memory space used by this matrix is viewed as a * linear array, \c start(d) returns the starting offset of * the first element in dimension \c d. (See \ref LaIndex * class.) */ inline int start() const; /** If the memory space used by this matrix is viewed as a * linear array, \c end(d) returns the starting offset of the * last element in dimension \c d. (See \ref LaIndex * class.) */ inline int end() const; /** Returns the index specifying this submatrix view in * dimension \c d. (See \ref LaIndex class.) This will only * differ from a unit-stride index is the current matrix is * actually a submatrix view of some larger matrix. */ inline LaIndex index() const; //@} /** @name Access functions */ //@{ /** Returns the \f$i\f$th element of this vector, with the * index i starting at zero (zero-based offset). This means * you have * * \f[ v = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_N * \end{array}\right) * \f] * * but for accessing the element \f$a_1\f$ you have to * write @c v(0). * * Optional runtime bounds checking (0<=i<=n) is set * by the compile time macro LA_BOUNDS_CHECK. */ inline COMPLEX& operator()(int i); /** Returns the \f$i\f$th element of this vector, with the * index i starting at zero (zero-based offset). This means * you have * * \f[ v = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_N * \end{array}\right) * \f] * * but for accessing the element \f$a_1\f$ you have to * write @c v(0). * * Optional runtime bounds checking (0<=i<=n) is set * by the compile time macro LA_BOUNDS_CHECK. */ inline const COMPLEX& operator()(int i) const ; /** Return a submatrix view specified by the index I. (See * \ref LaIndex class.) These indices specify start, * increment, and ending offsets, similar to triplet notation * of Matlab or Fortran 90. For example, if B is a 10 x 10 * matrix, I is \c (0:2:2) and J is \c (3:1:4), then \c B(I,J) * denotes the 2 x 2 matrix * * \f[ \left(\begin{array}{cc} b_{0,3} & b_{2,3} \\ * b_{0,4} & b_{4,4} * \end{array}\right) \f] */ inline LaVectorComplex operator()(const LaIndex& i); /** Return a submatrix view specified by the index I. (See * \ref LaIndex class.) These indices specify start, * increment, and ending offsets, similar to triplet notation * of Matlab or Fortran 90. For example, if B is a 10 x 10 * matrix, I is \c (0:2:2) and J is \c (3:1:4), then \c B(I,J) * denotes the 2 x 2 matrix * * \f[ \left(\begin{array}{cc} b_{0,3} & b_{2,3} \\ * b_{0,4} & b_{4,4} * \end{array}\right) \f] */ inline LaVectorComplex operator()(const LaIndex& i) const; //@} /** @name Assignments */ //@{ /** Set elements of left-hand size to the scalar value s. No * new vector is created, so that if there are other vectors * that reference this memory space, they will also be * affected. */ inline LaVectorComplex& operator=(COMPLEX s); // CS: addition /** Set elements of left-hand size to the scalar value s. No * new vector is created, so that if there are other vectors * that reference this memory space, they will also be * affected. */ inline LaVectorComplex& operator=(LaComplex s); /** Set elements of left-hand size to the scalar value s. No * new vector is created, so that if there are other vectors * that reference this memory space, they will also be * affected. */ inline LaVectorComplex& operator=(double s); // CS: end /** Release left-hand side (reclaiming memory space if * possible) and copy elements of elements of \c s. Unline \c * inject(), it does not require conformity, and previous * references of left-hand side are unaffected. * * This is an alias for copy(). */ inline LaVectorComplex& operator=(const LaGenMatComplex& s); /** Copy elements of s into the memory space referenced by the * left-hand side, without first releasing it. The effect is * that if other vectors share memory with left-hand side, * they too will be affected. Note that the size of s must be * the same as that of the left-hand side vector. * * @note If you rather wanted to create a new copy of \c s, * you should use \c copy() instead. */ inline LaVectorComplex& inject(const LaGenMatComplex &s); /** Release left-hand side (reclaiming memory space if * possible) and copy elements of elements of \c s. Unline \c * inject(), it does not require conformity, and previous * references of left-hand side are unaffected. */ inline LaVectorComplex& copy(const LaGenMatComplex &s); /** Let this vector reference the given vector s, so that the * given vector memory s is now referenced by multiple objects * (by the given object s and now also by this object). Handle * this with care! * * This function releases any previously referenced memory of * this object. */ inline LaVectorComplex& ref(const LaGenMatComplex &s); //@}};// NOTE: we default to column vectors, since matrices are column// oriented.inline LaVectorComplex::LaVectorComplex() : LaGenMatComplex(0,1) {}inline LaVectorComplex::LaVectorComplex(int i) : LaGenMatComplex(i,1) {}// NOTE: one shouldn't be using this method to initalize, but// it is here so that the constructor can be overloaded with // a runtime test.//inline LaVectorComplex::LaVectorComplex(int m, int n) : LaGenMatComplex(m,n){ assert(n==1 || m==1);}inline LaVectorComplex::LaVectorComplex(COMPLEX *d, int m) : LaGenMatComplex(d,m,1) {}inline LaVectorComplex::LaVectorComplex(COMPLEX *d, int m, int n) : LaGenMatComplex(d,m,n) {}inline LaVectorComplex::LaVectorComplex(const LaGenMatComplex& G){ assert(G.size(0)==1 || G.size(1)==1); (*this).ref(G);} //note that vectors can be either stored columnwise, or row-wise// this will handle the 0x0 case as well.inline int LaVectorComplex::size() const { return LaGenMatComplex::size(0)*LaGenMatComplex::size(1); }inline COMPLEX& LaVectorComplex::operator()(int i){ if (LaGenMatComplex::size(0)==1 ) return LaGenMatComplex::operator()(0,i); else return LaGenMatComplex::operator()(i,0);}inline const COMPLEX& LaVectorComplex::operator()(int i) const{ if (LaGenMatComplex::size(0)==1 ) return LaGenMatComplex::operator()(0,i); else return LaGenMatComplex::operator()(i,0);}inline LaVectorComplex LaVectorComplex::operator()(const LaIndex& I){ if (LaGenMatComplex::size(0)==1) return LaGenMatComplex::operator()(LaIndex(0,0),I).shallow_assign(); else return LaGenMatComplex::operator()(I,LaIndex(0,0)).shallow_assign(); }inline LaVectorComplex LaVectorComplex::operator()(const LaIndex& I) const{ if (LaGenMatComplex::size(0)==1) return LaGenMatComplex::operator()(LaIndex(0,0),I).shallow_assign(); else return LaGenMatComplex::operator()(I,LaIndex(0,0)).shallow_assign(); }inline LaVectorComplex& LaVectorComplex::copy(const LaGenMatComplex &A){ assert(A.size(0) == 1 || A.size(1) == 1); //make sure rhs is a // a vector. LaGenMatComplex::copy(A); return *this;}inline LaVectorComplex& LaVectorComplex::operator=(const LaGenMatComplex &A){ return copy(A); // until lapackpp-2.5.0: inject(A);}inline LaVectorComplex& LaVectorComplex::ref(const LaGenMatComplex &A){ assert(A.size(0) == 1 || A.size(1) == 1); LaGenMatComplex::ref(A); return *this;}inline LaVectorComplex& LaVectorComplex::operator=(COMPLEX d){ LaGenMatComplex::operator=(d); return *this;}inline LaVectorComplex& LaVectorComplex::operator=(LaComplex d){ LaGenMatComplex::operator=(d.toCOMPLEX()); return *this;}inline LaVectorComplex& LaVectorComplex::operator=(double d){ LaGenMatComplex::operator=(LaComplex(d).toCOMPLEX()); return *this;}inline LaVectorComplex& LaVectorComplex::inject(const LaGenMatComplex &A){ assert(A.size(0) == 1 || A.size(1) == 1); LaGenMatComplex::inject(A); return *this;} inline int LaVectorComplex::inc() const{ if (LaGenMatComplex::size(1)==1 ) return LaGenMatComplex::inc(0); else return LaGenMatComplex::inc(1)*LaGenMatComplex::gdim(0); // NOTE: This was changed on 2005-03-04 because without the dim[0] // this gives wrong results on non-unit-stride submatrix views.}inline LaIndex LaVectorComplex::index() const{ if (LaGenMatComplex::size(1)==1 ) return LaGenMatComplex::index(0); else return LaGenMatComplex::index(1);}inline int LaVectorComplex::start() const{ if (LaGenMatComplex::size(1)==1 ) return LaGenMatComplex::start(0); else return LaGenMatComplex::start(1);}inline int LaVectorComplex::end() const{ if (LaGenMatComplex::size(1)==1 ) return LaGenMatComplex::end(0); else return LaGenMatComplex::end(1);}#endif // _LA_VECTOR_COMPLEX_H_
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -