⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lavd.h

📁 LAPACK++ (Linear Algebra PACKage in C++) is a software library for numerical linear algebra that sol
💻 H
字号:
// -*-C++-*- // Copyright (C) 2004 // Christian Stimming <stimming@tuhh.de>// This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; either version 2, or (at// your option) any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Lesser General Public License for more details.// You should have received a copy of the GNU Lesser General Public License along// with this library; see the file COPYING.  If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.//      LAPACK++ (V. 1.1)//      (C) 1992-1996 All Rights Reserved./** @file  * @brief Real-valued vector */#ifndef _LA_VECTOR_DOUBLE_H_#define _LA_VECTOR_DOUBLE_H_#include "lafnames.h"#include LA_GEN_MAT_DOUBLE_H/** \brief Real-valued Vector class * *  A vector is simply an nx1 or 1xn, matrix, only that it can be *  constructed and accessed by a single dimension  * * Multiplication of this vector should be done by the functions in * blas1pp.h and blas2pp.h, e.g. Blas_Dot_Prod() or * Blas_Add_Mult(). (There are also some operators in blaspp.h, but we * advice against them because they will always allocate a new matrix * for the result even though you usually already have a matrix at * hand for writing the result into.)  Transpositions of vectors * usually do not have to be calculated explicitly, but you can * directly use the different multiplication functions that will use * this vector as a transposed one, e.g. Blas_R1_Update(). * */class DLLIMPORT LaVectorDouble: public LaGenMatDouble{   public:      /** @name Declaration */      //@{      /** Constructs a column vector of length 0 (null). */      LaVectorDouble();      /** Constructs a column vector of length n */      LaVectorDouble(int n);      /** Constructs a vector of size \f$m\times n\f$. One of the two       * dimensions must be one! */      LaVectorDouble(int m, int n);        /** Constructs a column vector of length n by copying the values       * from a one-dimensional C array of length n. */      LaVectorDouble(double* v, int n);      /** Constructs an \f$m\times n\f$ vector by copying the values       * from a one-dimensional C array of length mn. One of the two       * dimensions must be one! */      //LaVectorDouble(double* v, int m, int n);      /** Create a new vector from an existing matrix by copying. The       * given matrix s must be a vector, i.e. one of its dimensions       * must be one! */      LaVectorDouble(const LaGenMatDouble& s);      /** Resize to a column vector of length n.       *       * This method always resizes to column vector, similar to       * the one-argument constructor. If you want a row vector,       * use the two-argument resize(int,int) method.       *       * New in lapackpp-2.4.14.       */      void resize(int n);      /** Resize vector to size \f$m\times n\f$. One of the two       * dimensions must be one!       *       * New in lapackpp-2.4.14.       */      void resize(int m, int n);      //@}      /** @name Information */      //@{      /** Returns the length n of this vector. */      inline int size() const;      /** Returns the distance between memory locations (in terms of       * number of elements) between consecutive elements along       * dimension d. For example, if \c inc(d) returns 1, then       * elements along the dth dimension are contiguous in       * memory. */      inline int inc() const;      /** If the memory space used by this matrix is viewed as a       * linear array, \c start(d) returns the starting offset of       * the first element in dimension \c d. (See \ref LaIndex       * class.) */      inline int start() const;      /** If the memory space used by this matrix is viewed as a       * linear array, \c end(d) returns the starting offset of the       * last element in dimension \c d. (See \ref LaIndex       * class.) */      inline int end() const;      /** Returns the index specifying this submatrix view in       * dimension \c d. (See \ref LaIndex class.) This will only       * differ from a unit-stride index is the current matrix is       * actually a submatrix view of some larger matrix. */      inline LaIndex index() const;      //@}      /** @name Access functions */      //@{      /** Returns the \f$i\f$th element of this vector, with the       * index i starting at zero (zero-based offset). This means       * you have       *       * \f[ v = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_N       * \end{array}\right)       * \f]       *        * but for accessing the element \f$a_1\f$ you have to       * write @c v(0).       *       * Optional runtime bounds checking (0<=i<=n) is set       * by the compile time macro LA_BOUNDS_CHECK. */      inline double& operator()(int i);      /** Returns the \f$i\f$th element of this vector, with the       * index i starting at zero (zero-based offset). This means       * you have       *       * \f[ v = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_N       * \end{array}\right)       * \f]       *        * but for accessing the element \f$a_1\f$ you have to       * write @c v(0).       *       * Optional runtime bounds checking (0<=i<=n) is set       * by the compile time macro LA_BOUNDS_CHECK. */      inline const double& operator()(int i) const ;      /** Return a submatrix view specified by the index I. (See       * \ref LaIndex class.) These indices specify start,       * increment, and ending offsets, similar to triplet notation       * of Matlab or Fortran 90. For example, if B is a 10 x 10       * matrix, I is \c (0:2:2) and J is \c (3:1:4), then \c B(I,J)       * denotes the 2 x 2 matrix       *       * \f[  \left(\begin{array}{cc} b_{0,3} & b_{2,3} \\       * b_{0,4} & b_{4,4}       * \end{array}\right) \f]       */      inline LaVectorDouble operator()(const LaIndex& i);      /** Return a submatrix view specified by the index I. (See       * \ref LaIndex class.) These indices specify start,       * increment, and ending offsets, similar to triplet notation       * of Matlab or Fortran 90. For example, if B is a 10 x 10       * matrix, I is \c (0:2:2) and J is \c (3:1:4), then \c B(I,J)       * denotes the 2 x 2 matrix       *       * \f[  \left(\begin{array}{cc} b_{0,3} & b_{2,3} \\       * b_{0,4} & b_{4,4}       * \end{array}\right) \f]       */      inline LaVectorDouble operator()(const LaIndex& i) const;      //@}          /** @name Assignments */      //@{      /** Set elements of left-hand size to the scalar value s. No       * new vector is created, so that if there are other vectors       * that reference this memory space, they will also be       * affected. */      LaVectorDouble& operator=(double s);      /** Release left-hand side (reclaiming memory space if       * possible) and copy elements of elements of \c s. Unline \c       * inject(), it does not require conformity, and previous       * references of left-hand side are unaffected.        *       * This is an alias for copy().       */      LaVectorDouble& operator=(const LaGenMatDouble&s);      /** Copy elements of s into the memory space referenced by the       * left-hand side, without first releasing it. The effect is       * that if other vectors share memory with left-hand side,       * they too will be affected. Note that the size of s must be       * the same as that of the left-hand side vector.        *       * @note If you rather wanted to create a new copy of \c s,       * you should use \c copy() instead. */      LaVectorDouble& inject(const LaGenMatDouble &s);      /** Release left-hand side (reclaiming memory space if       * possible) and copy elements of elements of \c s. Unline \c       * inject(), it does not require conformity, and previous       * references of left-hand side are unaffected. */      LaVectorDouble& copy(const LaGenMatDouble &s);      /** Let this vector reference the given vector s, so that the       * given vector memory s is now referenced by multiple objects       * (by the given object s and now also by this object). Handle       * this with care!       *       * This function releases any previously referenced memory of       * this object. */      LaVectorDouble& ref(const LaGenMatDouble &);      //@}};// NOTE: we default to column vectors, since matrices are column//  oriented.inline LaVectorDouble::LaVectorDouble() : LaGenMatDouble(0,1) {}inline LaVectorDouble::LaVectorDouble(int i) : LaGenMatDouble(i,1) {}// NOTE: one shouldn't be using this method to initalize, but// it is here so that the constructor can be overloaded with // a runtime test.//inline LaVectorDouble::LaVectorDouble(int m, int n) : LaGenMatDouble(m,n){   assert(n==1 || m==1);}inline LaVectorDouble::LaVectorDouble(double *d, int m) :    LaGenMatDouble(d,m,1) {}#if 0inline LaVectorDouble::LaVectorDouble(double *d, int m, int n) :    LaGenMatDouble(d,m,n) {}#endifinline LaVectorDouble::LaVectorDouble(const LaGenMatDouble& G) :    LaGenMatDouble(G){   assert(G.size(0)==1 || G.size(1)==1);}inline void LaVectorDouble::resize(int i){   // Always resizes to column vector, similar to the one-argument   // constructor. If you want a row vector, use the two-argument   // resize().   LaGenMatDouble::resize(i, 1);  // column vector}inline void LaVectorDouble::resize(int m, int n){   assert(n==1 || m==1);   LaGenMatDouble::resize(m, n);}        //note that vectors can be either stored columnwise, or row-wise// this will handle the 0x0 case as well.inline int LaVectorDouble::size() const {   return LaGenMatDouble::size(0)*LaGenMatDouble::size(1); }inline double& LaVectorDouble::operator()(int i){   if (LaGenMatDouble::size(0)==1 )      return LaGenMatDouble::operator()(0,i);   else      return LaGenMatDouble::operator()(i,0);}inline const double& LaVectorDouble::operator()(int i) const{   if (LaGenMatDouble::size(0)==1 )      return LaGenMatDouble::operator()(0,i);   else      return LaGenMatDouble::operator()(i,0);}inline LaVectorDouble LaVectorDouble::operator()(const LaIndex& I){   if (LaGenMatDouble::size(0)==1)      return LaGenMatDouble::operator()(LaIndex(0,0),I).shallow_assign();    else      return LaGenMatDouble::operator()(I,LaIndex(0,0)).shallow_assign(); }inline LaVectorDouble LaVectorDouble::operator()(const LaIndex& I) const{   if (LaGenMatDouble::size(0)==1)      return LaGenMatDouble::operator()(LaIndex(0,0),I).shallow_assign();    else      return LaGenMatDouble::operator()(I,LaIndex(0,0)).shallow_assign(); }inline LaVectorDouble& LaVectorDouble::copy(const LaGenMatDouble &A){   assert(A.size(0) == 1 || A.size(1) == 1);   //make sure rhs is a   // a vector.   LaGenMatDouble::copy(A);   return *this;}inline LaVectorDouble& LaVectorDouble::operator=(const LaGenMatDouble &A){   return copy(A);}inline LaVectorDouble& LaVectorDouble::ref(const LaGenMatDouble &A){   assert(A.size(0) == 1 || A.size(1) == 1);   LaGenMatDouble::ref(A);   return *this;}inline LaVectorDouble& LaVectorDouble::operator=(double d){   LaGenMatDouble::operator=(d);   return *this;}inline LaVectorDouble& LaVectorDouble::inject(const LaGenMatDouble &A){   assert(A.size(0) == 1 || A.size(1) == 1);   LaGenMatDouble::inject(A);   return *this;}    inline int LaVectorDouble::inc() const{   if (LaGenMatDouble::size(1)==1 )      return LaGenMatDouble::inc(0);   else      return LaGenMatDouble::inc(1)*LaGenMatDouble::gdim(0);   // NOTE: This was changed on 2005-03-04 because without the dim[0]   // this gives wrong results on non-unit-stride submatrix views.}inline LaIndex LaVectorDouble::index() const{   if (LaGenMatDouble::size(1)==1 )      return LaGenMatDouble::index(0);   else      return LaGenMatDouble::index(1);}inline int LaVectorDouble::start() const{   if (LaGenMatDouble::size(1)==1 )      return LaGenMatDouble::start(0);   else      return LaGenMatDouble::start(1);}inline int LaVectorDouble::end() const{   if (LaGenMatDouble::size(1)==1 )      return LaGenMatDouble::end(0);   else      return LaGenMatDouble::end(1);}#endif // _LA_VECTOR_DOUBLE_H_

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -