📄 rls5.m
字号:
%RLS5 Problem 4.5
%
% 'ifile.mat' - input file containing:
% I - members of ensemble
% K - iterations
% s - deterministic part of reference signal
% sigman - standard deviation of noise in reference signal
% ND - delayer order
% Ha, Hb - numerator, denominator of H(z)
% sigmax - standard deviation of input
% (obtainable from sigman and H(z))
% N - filter order
% lambda - forgetting factor
%
% 'ofile.mat' - output file containing:
% ind - sample indexes
% MSE - mean-square error
% ep - last experiment a priori error
clear all % clear memory
load ifile; % read input variables
LD=ND+1; % delayer length
L=N+1; % filter length
delta=1/sigmax^2; % initialization factor for SD
ilambda=1/lambda; % auxiliary constant
MSE=zeros(K,1); % prepare to accumulate MSE*I
for i=1:I, % ensemble
D=zeros(LD,1); % initial delayer memory
X=zeros(L,1); % initial memory
SD=delta*eye(L);
% initial inverse of deterministic correlation matrix
W=zeros(L,1); % initial coefficient vector
n=randn(K,1)*sigman; % noise in reference signal
x=filter(Ha,Hb,n); % input
for k=1:K, % iterations
D=[s(k)+n(k)
D(1:ND)]; % new delay vector
d=D(LD); % desired signal sample
X=[x(k)
X(1:N)]; % new input vector
ep(k)=d-W'*X; % a priori error sample
psi=SD*X;
SD=ilambda*(SD-psi*psi'/(lambda+psi'*X));
% new inverse of deterministic correlation matrix
W=W+ep(k)*SD*X; % new coefficient vector
MSE(k)=MSE(k)+(ep(k))^2; % accumulate MSE*I
end
end
ind=0:(K-1); % sample indexes
MSE=MSE/I; % calculate MSE
save ofile ind MSE ep; % write output variables
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -