📄 dlcllms.m
字号:
%DLCLLMS Delayless Closed-Loop Subband LMS algorithm%% 'ifile.mat' - input file containing:% Nr - members of ensemble% N - iterations% Sx - standard deviation of input% B - coefficient vector of plant (numerator)% A - coefficient vector of plant (denominator)% Sn - standard deviation of measurement noise% u - convergence factor% gamma - small constant to prevent the updating factor from getting too large% % a - small factor for the updating equation for the signal energy in the subbands% M - number of subbands% Nfd - Nyquist filter length % Nw - order of the adaptive filter in the subbands% % 'ofile.mat' - output file containing:% MSE - mean-square errorclear all % clear memoryload ifile; % read input variablesL=M; % interpolation/decimation factor% Design of the fractional delays% --------------------K=(Nfd-1)/2;n=-K:K;b=sinc(n/L);win=hamming(Nfd);h=b.*win'; % Ideal filter truncated response% Polyphase decomposition of the Nyquist filterh=[zeros(1,ceil(Nfd/M)*M-Nfd) h];Ed=reshape(h,M,length(h)/M); % analysis filter bankfor m=1:L-1 Rd(m+1,:)=Ed(m,:);endRd(1,:)=Ed(L,:);Rd=flipud(Rd); % synthesis filter bankF=dftmtx(M); % DFT matrixE=(F);R=(F');for l=1:Nr disp(['Run: ' num2str(l)]) nc=sqrt(Sn)*randn(1,N*M); % noise at unknown system output xin=sqrt(Sx)*sqrt(12)*(rand(1,N*M)-.5); % input signal d=filter(B,A,xin); % desired signal d=d+nc; % unknown system output for m=1:M w_cl(m,:)=zeros(1,Nw+1); % initial coefficient vector for subband m x_cl(m,:)=[zeros(1,Nw+1)]; sig_cl(m)=0; end d_cl=d; % desired signal Zg=zeros(M*Nw-1,1); x_p=zeros(L,1); d_p=zeros(L,1); xx_frac=zeros(size(Ed,2),M); ee_frac=zeros(size(Ed,2),M); dd_frac=zeros(size(Ed,2),M); yy_frac=zeros(size(Ed,2),M); xsb=zeros(M,N); for k=1:N if mod(k,200)==0 disp(['Iteration: ' num2str(k)]), end; % Analysis of input signal aux=(k-1)*L+1:k*L; x_p=fliplr(xin(aux)); for m=1:M xx_frac(:,m)=cat(1, x_p(m) , xx_frac(1:end-1,m)); % new input signal vector for fractional delay filter of subband m x_frac(m)=Ed(m,:)*xx_frac(:,m); % output of fractional delay filter of subband m end; xsb(:,k)=E*x_frac'; % input signal split in subbands % Mapping of the adaptive filters coefficients into full-band filter ww=real(F'*w_cl)/(M); G(1,:)=ww(1,1:end-1); Dint=(size(Ed,2)-1)/2; for m=2:M aux=conv(Ed(m-1,:),ww(m,:)); G(m,:)=aux(Dint+2:Dint+1+size(ww,2)-1); end; GG=reshape(G,1,M*Nw); % equivalent full-band filter [y_dl,Zg]=filter(GG,1,fliplr(x_p),Zg'); e_aux1=(d_cl((k-1)*L+1:k*L)) - y_dl; e_aux1=fliplr(e_aux1); % L error samples for m=1:M ee_frac(:,m)=cat(1, (e_aux1(m)) , ee_frac(1:end-1,m)); e_frac(m)=Ed(m,:)*ee_frac(:,m); end; esb(:,k)=E*e_frac'; % error samples split in subbands for m=1:M % adaptation in the subbands x_cl(m,:)=[xsb(m,k) x_cl(m,1:Nw)]; % new input signal vector for subband m sig_cl(m)=(1-a)*sig_cl(m)+a*abs(xsb(m,k))^2; unlms_cl=u/(gamma+(Nw+1)*sig_cl(m)); w_cl(m,:)=w_cl(m,:)+2*unlms_cl*esb(m,k)'*(x_cl(m,:)); % new coefficient vector for subband m end; e_cl(l,(k-1)*L+1:k*L)=e_aux1; end;end;MSE=mean(abs(e_cl).^2,1); % MSEsave ofile MSE
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -