📄 ztrsm.c
字号:
/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order)*/#include "f2c.h"/* Table of constant values */static doublecomplex c_b1 = {1.,0.};/* Subroutine */ int ztrsm_(char *side, char *uplo, char *transa, char *diag, integer *m, integer *n, doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb){ /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; doublecomplex z__1, z__2, z__3; /* Builtin functions */ void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg( doublecomplex *, doublecomplex *); /* Local variables */ static integer info; static doublecomplex temp; static integer i, j, k; static logical lside; extern logical lsame_(char *, char *); static integer nrowa; static logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); static logical noconj, nounit;/* Purpose ======= ZTRSM solves one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). The matrix X is overwritten on B. Parameters ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B. Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = conjg( A' ). Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. B - COMPLEX*16 array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. Test the input parameters. Parameter adjustments Function Body */#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)] lside = lsame_(side, "L"); if (lside) { nrowa = *m; } else { nrowa = *n; } noconj = lsame_(transa, "T"); nounit = lsame_(diag, "N"); upper = lsame_(uplo, "U"); info = 0; if (! lside && ! lsame_(side, "R")) { info = 1; } else if (! upper && ! lsame_(uplo, "L")) { info = 2; } else if (! lsame_(transa, "N") && ! lsame_(transa, "T") && ! lsame_(transa, "C")) { info = 3; } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) { info = 4; } else if (*m < 0) { info = 5; } else if (*n < 0) { info = 6; } else if (*lda < max(1,nrowa)) { info = 9; } else if (*ldb < max(1,*m)) { info = 11; } if (info != 0) { xerbla_("ZTRSM ", &info); return 0; }/* Quick return if possible. */ if (*n == 0) { return 0; }/* And when alpha.eq.zero. */ if (alpha->r == 0. && alpha->i == 0.) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * b_dim1; B(i,j).r = 0., B(i,j).i = 0.;/* L10: */ }/* L20: */ } return 0; }/* Start the operations. */ if (lside) { if (lsame_(transa, "N")) {/* Form B := alpha*inv( A )*B. */ if (upper) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (alpha->r != 1. || alpha->i != 0.) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * b_dim1; i__4 = i + j * b_dim1; z__1.r = alpha->r * B(i,j).r - alpha->i * B(i,j) .i, z__1.i = alpha->r * B(i,j).i + alpha->i * B(i,j).r; B(i,j).r = z__1.r, B(i,j).i = z__1.i;/* L30: */ } } for (k = *m; k >= 1; --k) { i__2 = k + j * b_dim1; if (B(k,j).r != 0. || B(k,j).i != 0.) { if (nounit) { i__2 = k + j * b_dim1; z_div(&z__1, &B(k,j), &A(k,k)); B(k,j).r = z__1.r, B(k,j).i = z__1.i; } i__2 = k - 1; for (i = 1; i <= k-1; ++i) { i__3 = i + j * b_dim1; i__4 = i + j * b_dim1; i__5 = k + j * b_dim1; i__6 = i + k * a_dim1; z__2.r = B(k,j).r * A(i,k).r - B(k,j).i * A(i,k).i, z__2.i = B(k,j).r * A(i,k).i + B(k,j).i * A(i,k).r; z__1.r = B(i,j).r - z__2.r, z__1.i = B(i,j) .i - z__2.i; B(i,j).r = z__1.r, B(i,j).i = z__1.i;/* L40: */ } }/* L50: */ }/* L60: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { if (alpha->r != 1. || alpha->i != 0.) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * b_dim1; i__4 = i + j * b_dim1; z__1.r = alpha->r * B(i,j).r - alpha->i * B(i,j) .i, z__1.i = alpha->r * B(i,j).i + alpha->i * B(i,j).r; B(i,j).r = z__1.r, B(i,j).i = z__1.i;/* L70: */ } } i__2 = *m; for (k = 1; k <= *m; ++k) { i__3 = k + j * b_dim1; if (B(k,j).r != 0. || B(k,j).i != 0.) { if (nounit) { i__3 = k + j * b_dim1; z_div(&z__1, &B(k,j), &A(k,k)); B(k,j).r = z__1.r, B(k,j).i = z__1.i; } i__3 = *m; for (i = k + 1; i <= *m; ++i) { i__4 = i + j * b_dim1; i__5 = i + j * b_dim1; i__6 = k + j * b_dim1; i__7 = i + k * a_dim1; z__2.r = B(k,j).r * A(i,k).r - B(k,j).i * A(i,k).i, z__2.i = B(k,j).r * A(i,k).i + B(k,j).i * A(i,k).r; z__1.r = B(i,j).r - z__2.r, z__1.i = B(i,j) .i - z__2.i; B(i,j).r = z__1.r, B(i,j).i = z__1.i;/* L80: */ } }/* L90: */ }/* L100: */ } } } else {/* Form B := alpha*inv( A' )*B or B := alpha*inv( conjg( A' ) )*B. */ if (upper) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -