⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ztrsm.c

📁 SuperLU 2.2版本。对大型、稀疏、非对称的线性系统的直接求解
💻 C
📖 第 1 页 / 共 2 页
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Table of constant values */static doublecomplex c_b1 = {1.,0.};/* Subroutine */ int ztrsm_(char *side, char *uplo, char *transa, char *diag, 	integer *m, integer *n, doublecomplex *alpha, doublecomplex *a, 	integer *lda, doublecomplex *b, integer *ldb){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, 	    i__6, i__7;    doublecomplex z__1, z__2, z__3;    /* Builtin functions */    void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(	    doublecomplex *, doublecomplex *);    /* Local variables */    static integer info;    static doublecomplex temp;    static integer i, j, k;    static logical lside;    extern logical lsame_(char *, char *);    static integer nrowa;    static logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);    static logical noconj, nounit;/*  Purpose       =======       ZTRSM  solves one of the matrix equations          op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,       where alpha is a scalar, X and B are m by n matrices, A is a unit, or       non-unit,  upper or lower triangular matrix  and  op( A )  is one  of          op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).       The matrix X is overwritten on B.       Parameters       ==========       SIDE   - CHARACTER*1.                On entry, SIDE specifies whether op( A ) appears on the left                or right of X as follows:                   SIDE = 'L' or 'l'   op( A )*X = alpha*B.                   SIDE = 'R' or 'r'   X*op( A ) = alpha*B.                Unchanged on exit.       UPLO   - CHARACTER*1.                On entry, UPLO specifies whether the matrix A is an upper or                lower triangular matrix as follows:                   UPLO = 'U' or 'u'   A is an upper triangular matrix.                   UPLO = 'L' or 'l'   A is a lower triangular matrix.                Unchanged on exit.       TRANSA - CHARACTER*1.                On entry, TRANSA specifies the form of op( A ) to be used in                the matrix multiplication as follows:                   TRANSA = 'N' or 'n'   op( A ) = A.                   TRANSA = 'T' or 't'   op( A ) = A'.                   TRANSA = 'C' or 'c'   op( A ) = conjg( A' ).                Unchanged on exit.       DIAG   - CHARACTER*1.                On entry, DIAG specifies whether or not A is unit triangular                as follows:                   DIAG = 'U' or 'u'   A is assumed to be unit triangular.                   DIAG = 'N' or 'n'   A is not assumed to be unit                                       triangular.                Unchanged on exit.       M      - INTEGER.                On entry, M specifies the number of rows of B. M must be at                least zero.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the number of columns of B.  N must be                at least zero.                Unchanged on exit.       ALPHA  - COMPLEX*16      .                On entry,  ALPHA specifies the scalar  alpha. When  alpha is                zero then  A is not referenced and  B need not be set before                entry.                Unchanged on exit.       A      - COMPLEX*16       array of DIMENSION ( LDA, k ), where k is m                when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.                Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k                upper triangular part of the array  A must contain the upper                triangular matrix  and the strictly lower triangular part of                A is not referenced.                Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k                lower triangular part of the array  A must contain the lower                triangular matrix  and the strictly upper triangular part of                A is not referenced.                Note that when  DIAG = 'U' or 'u',  the diagonal elements of                A  are not referenced either,  but are assumed to be  unity.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program.  When  SIDE = 'L' or 'l'  then                LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'                then LDA must be at least max( 1, n ).                Unchanged on exit.       B      - COMPLEX*16       array of DIMENSION ( LDB, n ).                Before entry,  the leading  m by n part of the array  B must                contain  the  right-hand  side  matrix  B,  and  on exit  is                overwritten by the solution matrix  X.       LDB    - INTEGER.                On entry, LDB specifies the first dimension of B as declared                in  the  calling  (sub)  program.   LDB  must  be  at  least                max( 1, m ).                Unchanged on exit.       Level 3 Blas routine.       -- Written on 8-February-1989.          Jack Dongarra, Argonne National Laboratory.          Iain Duff, AERE Harwell.          Jeremy Du Croz, Numerical Algorithms Group Ltd.          Sven Hammarling, Numerical Algorithms Group Ltd.          Test the input parameters.          Parameter adjustments          Function Body */#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]    lside = lsame_(side, "L");    if (lside) {	nrowa = *m;    } else {	nrowa = *n;    }    noconj = lsame_(transa, "T");    nounit = lsame_(diag, "N");    upper = lsame_(uplo, "U");    info = 0;    if (! lside && ! lsame_(side, "R")) {	info = 1;    } else if (! upper && ! lsame_(uplo, "L")) {	info = 2;    } else if (! lsame_(transa, "N") && ! lsame_(transa, "T") 	    && ! lsame_(transa, "C")) {	info = 3;    } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) {	info = 4;    } else if (*m < 0) {	info = 5;    } else if (*n < 0) {	info = 6;    } else if (*lda < max(1,nrowa)) {	info = 9;    } else if (*ldb < max(1,*m)) {	info = 11;    }    if (info != 0) {	xerbla_("ZTRSM ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0) {	return 0;    }/*     And when  alpha.eq.zero. */    if (alpha->r == 0. && alpha->i == 0.) {	i__1 = *n;	for (j = 1; j <= *n; ++j) {	    i__2 = *m;	    for (i = 1; i <= *m; ++i) {		i__3 = i + j * b_dim1;		B(i,j).r = 0., B(i,j).i = 0.;/* L10: */	    }/* L20: */	}	return 0;    }/*     Start the operations. */    if (lside) {	if (lsame_(transa, "N")) {/*           Form  B := alpha*inv( A )*B. */	    if (upper) {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    if (alpha->r != 1. || alpha->i != 0.) {			i__2 = *m;			for (i = 1; i <= *m; ++i) {			    i__3 = i + j * b_dim1;			    i__4 = i + j * b_dim1;			    z__1.r = alpha->r * B(i,j).r - alpha->i * B(i,j)				    .i, z__1.i = alpha->r * B(i,j).i + 				    alpha->i * B(i,j).r;			    B(i,j).r = z__1.r, B(i,j).i = z__1.i;/* L30: */			}		    }		    for (k = *m; k >= 1; --k) {			i__2 = k + j * b_dim1;			if (B(k,j).r != 0. || B(k,j).i != 0.) {			    if (nounit) {				i__2 = k + j * b_dim1;				z_div(&z__1, &B(k,j), &A(k,k));				B(k,j).r = z__1.r, B(k,j).i = z__1.i;			    }			    i__2 = k - 1;			    for (i = 1; i <= k-1; ++i) {				i__3 = i + j * b_dim1;				i__4 = i + j * b_dim1;				i__5 = k + j * b_dim1;				i__6 = i + k * a_dim1;				z__2.r = B(k,j).r * A(i,k).r - B(k,j).i * 					A(i,k).i, z__2.i = B(k,j).r * A(i,k).i + B(k,j).i * A(i,k).r;				z__1.r = B(i,j).r - z__2.r, z__1.i = B(i,j)					.i - z__2.i;				B(i,j).r = z__1.r, B(i,j).i = z__1.i;/* L40: */			    }			}/* L50: */		    }/* L60: */		}	    } else {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    if (alpha->r != 1. || alpha->i != 0.) {			i__2 = *m;			for (i = 1; i <= *m; ++i) {			    i__3 = i + j * b_dim1;			    i__4 = i + j * b_dim1;			    z__1.r = alpha->r * B(i,j).r - alpha->i * B(i,j)				    .i, z__1.i = alpha->r * B(i,j).i + 				    alpha->i * B(i,j).r;			    B(i,j).r = z__1.r, B(i,j).i = z__1.i;/* L70: */			}		    }		    i__2 = *m;		    for (k = 1; k <= *m; ++k) {			i__3 = k + j * b_dim1;			if (B(k,j).r != 0. || B(k,j).i != 0.) {			    if (nounit) {				i__3 = k + j * b_dim1;				z_div(&z__1, &B(k,j), &A(k,k));				B(k,j).r = z__1.r, B(k,j).i = z__1.i;			    }			    i__3 = *m;			    for (i = k + 1; i <= *m; ++i) {				i__4 = i + j * b_dim1;				i__5 = i + j * b_dim1;				i__6 = k + j * b_dim1;				i__7 = i + k * a_dim1;				z__2.r = B(k,j).r * A(i,k).r - B(k,j).i * 					A(i,k).i, z__2.i = B(k,j).r * A(i,k).i + B(k,j).i * A(i,k).r;				z__1.r = B(i,j).r - z__2.r, z__1.i = B(i,j)					.i - z__2.i;				B(i,j).r = z__1.r, B(i,j).i = z__1.i;/* L80: */			    }			}/* L90: */		    }/* L100: */		}	    }	} else {/*           Form  B := alpha*inv( A' )*B                or    B := alpha*inv( conjg( A' ) )*B. */	    if (upper) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -