⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 strsv.c

📁 SuperLU 2.2版本。对大型、稀疏、非对称的线性系统的直接求解
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Subroutine */ int strsv_(char *uplo, char *trans, char *diag, integer *n, 	real *a, integer *lda, real *x, integer *incx){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    static integer info;    static real temp;    static integer i, j;    extern logical lsame_(char *, char *);    static integer ix, jx, kx;    extern /* Subroutine */ int xerbla_(char *, integer *);    static logical nounit;/*  Purpose       =======       STRSV  solves one of the systems of equations          A*x = b,   or   A'*x = b,       where b and x are n element vectors and A is an n by n unit, or       non-unit, upper or lower triangular matrix.       No test for singularity or near-singularity is included in this       routine. Such tests must be performed before calling this routine.       Parameters       ==========       UPLO   - CHARACTER*1.                On entry, UPLO specifies whether the matrix is an upper or                lower triangular matrix as follows:                   UPLO = 'U' or 'u'   A is an upper triangular matrix.                   UPLO = 'L' or 'l'   A is a lower triangular matrix.                Unchanged on exit.       TRANS  - CHARACTER*1.                On entry, TRANS specifies the equations to be solved as                follows:                   TRANS = 'N' or 'n'   A*x = b.                   TRANS = 'T' or 't'   A'*x = b.                   TRANS = 'C' or 'c'   A'*x = b.                Unchanged on exit.       DIAG   - CHARACTER*1.                On entry, DIAG specifies whether or not A is unit                triangular as follows:                   DIAG = 'U' or 'u'   A is assumed to be unit triangular.                   DIAG = 'N' or 'n'   A is not assumed to be unit                                       triangular.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the order of the matrix A.                N must be at least zero.                Unchanged on exit.       A      - REAL             array of DIMENSION ( LDA, n ).                Before entry with  UPLO = 'U' or 'u', the leading n by n                upper triangular part of the array A must contain the upper                triangular matrix and the strictly lower triangular part of                A is not referenced.                Before entry with UPLO = 'L' or 'l', the leading n by n                lower triangular part of the array A must contain the lower                triangular matrix and the strictly upper triangular part of                A is not referenced.                Note that when  DIAG = 'U' or 'u', the diagonal elements of                A are not referenced either, but are assumed to be unity.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program. LDA must be at least                max( 1, n ).                Unchanged on exit.       X      - REAL             array of dimension at least                ( 1 + ( n - 1 )*abs( INCX ) ).                Before entry, the incremented array X must contain the n                element right-hand side vector b. On exit, X is overwritten                with the solution vector x.       INCX   - INTEGER.                On entry, INCX specifies the increment for the elements of                X. INCX must not be zero.                Unchanged on exit.       Level 2 Blas routine.       -- Written on 22-October-1986.          Jack Dongarra, Argonne National Lab.          Jeremy Du Croz, Nag Central Office.          Sven Hammarling, Nag Central Office.          Richard Hanson, Sandia National Labs.          Test the input parameters.          Parameter adjustments          Function Body */#define X(I) x[(I)-1]#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]    info = 0;    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {	info = 1;    } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") &&	     ! lsame_(trans, "C")) {	info = 2;    } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) {	info = 3;    } else if (*n < 0) {	info = 4;    } else if (*lda < max(1,*n)) {	info = 6;    } else if (*incx == 0) {	info = 8;    }    if (info != 0) {	xerbla_("STRSV ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0) {	return 0;    }    nounit = lsame_(diag, "N");/*     Set up the start point in X if the increment is not unity. This          will be  ( N - 1 )*INCX  too small for descending loops. */    if (*incx <= 0) {	kx = 1 - (*n - 1) * *incx;    } else if (*incx != 1) {	kx = 1;    }/*     Start the operations. In this version the elements of A are          accessed sequentially with one pass through A. */    if (lsame_(trans, "N")) {/*        Form  x := inv( A )*x. */	if (lsame_(uplo, "U")) {	    if (*incx == 1) {		for (j = *n; j >= 1; --j) {		    if (X(j) != 0.f) {			if (nounit) {			    X(j) /= A(j,j);			}			temp = X(j);			for (i = j - 1; i >= 1; --i) {			    X(i) -= temp * A(i,j);/* L10: */			}		    }/* L20: */		}	    } else {		jx = kx + (*n - 1) * *incx;		for (j = *n; j >= 1; --j) {		    if (X(jx) != 0.f) {			if (nounit) {			    X(jx) /= A(j,j);			}			temp = X(jx);			ix = jx;			for (i = j - 1; i >= 1; --i) {			    ix -= *incx;			    X(ix) -= temp * A(i,j);/* L30: */			}		    }		    jx -= *incx;/* L40: */		}	    }	} else {	    if (*incx == 1) {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    if (X(j) != 0.f) {			if (nounit) {			    X(j) /= A(j,j);			}			temp = X(j);			i__2 = *n;			for (i = j + 1; i <= *n; ++i) {			    X(i) -= temp * A(i,j);/* L50: */			}		    }/* L60: */		}	    } else {		jx = kx;		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    if (X(jx) != 0.f) {			if (nounit) {			    X(jx) /= A(j,j);			}			temp = X(jx);			ix = jx;			i__2 = *n;			for (i = j + 1; i <= *n; ++i) {			    ix += *incx;			    X(ix) -= temp * A(i,j);/* L70: */			}		    }		    jx += *incx;/* L80: */		}	    }	}    } else {/*        Form  x := inv( A' )*x. */	if (lsame_(uplo, "U")) {	    if (*incx == 1) {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    temp = X(j);		    i__2 = j - 1;		    for (i = 1; i <= j-1; ++i) {			temp -= A(i,j) * X(i);/* L90: */		    }		    if (nounit) {			temp /= A(j,j);		    }		    X(j) = temp;/* L100: */		}	    } else {		jx = kx;		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    temp = X(jx);		    ix = kx;		    i__2 = j - 1;		    for (i = 1; i <= j-1; ++i) {			temp -= A(i,j) * X(ix);			ix += *incx;/* L110: */		    }		    if (nounit) {			temp /= A(j,j);		    }		    X(jx) = temp;		    jx += *incx;/* L120: */		}	    }	} else {	    if (*incx == 1) {		for (j = *n; j >= 1; --j) {		    temp = X(j);		    i__1 = j + 1;		    for (i = *n; i >= j+1; --i) {			temp -= A(i,j) * X(i);/* L130: */		    }		    if (nounit) {			temp /= A(j,j);		    }		    X(j) = temp;/* L140: */		}	    } else {		kx += (*n - 1) * *incx;		jx = kx;		for (j = *n; j >= 1; --j) {		    temp = X(jx);		    ix = kx;		    i__1 = j + 1;		    for (i = *n; i >= j+1; --i) {			temp -= A(i,j) * X(ix);			ix -= *incx;/* L150: */		    }		    if (nounit) {			temp /= A(j,j);		    }		    X(jx) = temp;		    jx -= *incx;/* L160: */		}	    }	}    }    return 0;/*     End of STRSV . */} /* strsv_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -