⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgemm.c

📁 SuperLU 2.2版本。对大型、稀疏、非对称的线性系统的直接求解
💻 C
📖 第 1 页 / 共 2 页
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer *	n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda, 	doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex *c,	 integer *ldc){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 	    i__3, i__4, i__5, i__6;    doublecomplex z__1, z__2, z__3, z__4;    /* Builtin functions */    void d_cnjg(doublecomplex *, doublecomplex *);    /* Local variables */    static integer info;    static logical nota, notb;    static doublecomplex temp;    static integer i, j, l;    static logical conja, conjb;    static integer ncola;    extern logical lsame_(char *, char *);    static integer nrowa, nrowb;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  Purpose       =======       ZGEMM  performs one of the matrix-matrix operations          C := alpha*op( A )*op( B ) + beta*C,       where  op( X ) is one of          op( X ) = X   or   op( X ) = X'   or   op( X ) = conjg( X' ),       alpha and beta are scalars, and A, B and C are matrices, with op( A )       an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.       Parameters       ==========       TRANSA - CHARACTER*1.                On entry, TRANSA specifies the form of op( A ) to be used in                the matrix multiplication as follows:                   TRANSA = 'N' or 'n',  op( A ) = A.                   TRANSA = 'T' or 't',  op( A ) = A'.                   TRANSA = 'C' or 'c',  op( A ) = conjg( A' ).                Unchanged on exit.       TRANSB - CHARACTER*1.                On entry, TRANSB specifies the form of op( B ) to be used in                the matrix multiplication as follows:                   TRANSB = 'N' or 'n',  op( B ) = B.                   TRANSB = 'T' or 't',  op( B ) = B'.                   TRANSB = 'C' or 'c',  op( B ) = conjg( B' ).                Unchanged on exit.       M      - INTEGER.                On entry,  M  specifies  the number  of rows  of the  matrix                op( A )  and of the  matrix  C.  M  must  be at least  zero.                Unchanged on exit.       N      - INTEGER.                On entry,  N  specifies the number  of columns of the matrix                op( B ) and the number of columns of the matrix C. N must be                at least zero.                Unchanged on exit.       K      - INTEGER.                On entry,  K  specifies  the number of columns of the matrix                op( A ) and the number of rows of the matrix op( B ). K must                be at least  zero.                Unchanged on exit.       ALPHA  - COMPLEX*16      .                On entry, ALPHA specifies the scalar alpha.                Unchanged on exit.       A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is                k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.                Before entry with  TRANSA = 'N' or 'n',  the leading  m by k                part of the array  A  must contain the matrix  A,  otherwise                the leading  k by m  part of the array  A  must contain  the                matrix A.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program. When  TRANSA = 'N' or 'n' then                LDA must be at least  max( 1, m ), otherwise  LDA must be at                least  max( 1, k ).                Unchanged on exit.       B      - COMPLEX*16       array of DIMENSION ( LDB, kb ), where kb is                n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.                Before entry with  TRANSB = 'N' or 'n',  the leading  k by n                part of the array  B  must contain the matrix  B,  otherwise                the leading  n by k  part of the array  B  must contain  the                matrix B.                Unchanged on exit.       LDB    - INTEGER.                On entry, LDB specifies the first dimension of B as declared                in the calling (sub) program. When  TRANSB = 'N' or 'n' then                LDB must be at least  max( 1, k ), otherwise  LDB must be at                least  max( 1, n ).                Unchanged on exit.       BETA   - COMPLEX*16      .                On entry,  BETA  specifies the scalar  beta.  When  BETA  is                supplied as zero then C need not be set on input.                Unchanged on exit.       C      - COMPLEX*16       array of DIMENSION ( LDC, n ).                Before entry, the leading  m by n  part of the array  C must                contain the matrix  C,  except when  beta  is zero, in which                case C need not be set on entry.                On exit, the array  C  is overwritten by the  m by n  matrix                ( alpha*op( A )*op( B ) + beta*C ).       LDC    - INTEGER.                On entry, LDC specifies the first dimension of C as declared                in  the  calling  (sub)  program.   LDC  must  be  at  least                max( 1, m ).                Unchanged on exit.       Level 3 Blas routine.       -- Written on 8-February-1989.          Jack Dongarra, Argonne National Laboratory.          Iain Duff, AERE Harwell.          Jeremy Du Croz, Numerical Algorithms Group Ltd.          Sven Hammarling, Numerical Algorithms Group Ltd.          Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not          conjugated or transposed, set  CONJA and CONJB  as true if  A  and          B  respectively are to be  transposed but  not conjugated  and set          NROWA, NCOLA and  NROWB  as the number of rows and  columns  of  A          and the number of rows of  B  respectively.          Parameter adjustments          Function Body */#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]#define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)]    nota = lsame_(transa, "N");    notb = lsame_(transb, "N");    conja = lsame_(transa, "C");    conjb = lsame_(transb, "C");    if (nota) {	nrowa = *m;	ncola = *k;    } else {	nrowa = *k;	ncola = *m;    }    if (notb) {	nrowb = *k;    } else {	nrowb = *n;    }/*     Test the input parameters. */    info = 0;    if (! nota && ! conja && ! lsame_(transa, "T")) {	info = 1;    } else if (! notb && ! conjb && ! lsame_(transb, "T")) {	info = 2;    } else if (*m < 0) {	info = 3;    } else if (*n < 0) {	info = 4;    } else if (*k < 0) {	info = 5;    } else if (*lda < max(1,nrowa)) {	info = 8;    } else if (*ldb < max(1,nrowb)) {	info = 10;    } else if (*ldc < max(1,*m)) {	info = 13;    }    if (info != 0) {	xerbla_("ZGEMM ", &info);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0 || (alpha->r == 0. && alpha->i == 0. || *k == 0) &&	     (beta->r == 1. && beta->i == 0.)) {	return 0;    }/*     And when  alpha.eq.zero. */    if (alpha->r == 0. && alpha->i == 0.) {	if (beta->r == 0. && beta->i == 0.) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = *m;		for (i = 1; i <= *m; ++i) {		    i__3 = i + j * c_dim1;		    C(i,j).r = 0., C(i,j).i = 0.;/* L10: */		}/* L20: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = *m;		for (i = 1; i <= *m; ++i) {		    i__3 = i + j * c_dim1;		    i__4 = i + j * c_dim1;		    z__1.r = beta->r * C(i,j).r - beta->i * C(i,j).i, 			    z__1.i = beta->r * C(i,j).i + beta->i * C(i,j)			    .r;		    C(i,j).r = z__1.r, C(i,j).i = z__1.i;/* L30: */		}/* L40: */	    }	}	return 0;    }/*     Start the operations. */    if (notb) {	if (nota) {/*           Form  C := alpha*A*B + beta*C. */	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		if (beta->r == 0. && beta->i == 0.) {		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			i__3 = i + j * c_dim1;			C(i,j).r = 0., C(i,j).i = 0.;/* L50: */		    }		} else if (beta->r != 1. || beta->i != 0.) {		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			i__3 = i + j * c_dim1;			i__4 = i + j * c_dim1;			z__1.r = beta->r * C(i,j).r - beta->i * C(i,j).i, 				z__1.i = beta->r * C(i,j).i + beta->i * C(i,j).r;			C(i,j).r = z__1.r, C(i,j).i = z__1.i;/* L60: */		    }		}		i__2 = *k;		for (l = 1; l <= *k; ++l) {		    i__3 = l + j * b_dim1;		    if (B(l,j).r != 0. || B(l,j).i != 0.) {			i__3 = l + j * b_dim1;			z__1.r = alpha->r * B(l,j).r - alpha->i * B(l,j).i, 				z__1.i = alpha->r * B(l,j).i + alpha->i * B(l,j).r;			temp.r = z__1.r, temp.i = z__1.i;			i__3 = *m;			for (i = 1; i <= *m; ++i) {			    i__4 = i + j * c_dim1;			    i__5 = i + j * c_dim1;			    i__6 = i + l * a_dim1;			    z__2.r = temp.r * A(i,l).r - temp.i * A(i,l).i, 				    z__2.i = temp.r * A(i,l).i + temp.i * A(i,l).r;			    z__1.r = C(i,j).r + z__2.r, z__1.i = C(i,j).i + 				    z__2.i;			    C(i,j).r = z__1.r, C(i,j).i = z__1.i;/* L70: */			}		    }/* L80: */		}/* L90: */	    }	} else if (conja) {/*           Form  C := alpha*conjg( A' )*B + beta*C. */	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = *m;		for (i = 1; i <= *m; ++i) {		    temp.r = 0., temp.i = 0.;		    i__3 = *k;		    for (l = 1; l <= *k; ++l) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -