📄 zgemm.c
字号:
/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order)*/#include "f2c.h"/* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer * n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex *c, integer *ldc){ /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublecomplex z__1, z__2, z__3, z__4; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ static integer info; static logical nota, notb; static doublecomplex temp; static integer i, j, l; static logical conja, conjb; static integer ncola; extern logical lsame_(char *, char *); static integer nrowa, nrowb; extern /* Subroutine */ int xerbla_(char *, integer *);/* Purpose ======= ZGEMM performs one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, where op( X ) is one of op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. Parameters ========== TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A'. TRANSA = 'C' or 'c', op( A ) = conjg( A' ). Unchanged on exit. TRANSB - CHARACTER*1. On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B'. TRANSB = 'C' or 'c', op( B ) = conjg( B' ). Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero. Unchanged on exit. ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ). Unchanged on exit. BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. C - COMPLEX*16 array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ). LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. Set NOTA and NOTB as true if A and B respectively are not conjugated or transposed, set CONJA and CONJB as true if A and B respectively are to be transposed but not conjugated and set NROWA, NCOLA and NROWB as the number of rows and columns of A and the number of rows of B respectively. Parameter adjustments Function Body */#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]#define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)] nota = lsame_(transa, "N"); notb = lsame_(transb, "N"); conja = lsame_(transa, "C"); conjb = lsame_(transb, "C"); if (nota) { nrowa = *m; ncola = *k; } else { nrowa = *k; ncola = *m; } if (notb) { nrowb = *k; } else { nrowb = *n; }/* Test the input parameters. */ info = 0; if (! nota && ! conja && ! lsame_(transa, "T")) { info = 1; } else if (! notb && ! conjb && ! lsame_(transb, "T")) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < max(1,nrowa)) { info = 8; } else if (*ldb < max(1,nrowb)) { info = 10; } else if (*ldc < max(1,*m)) { info = 13; } if (info != 0) { xerbla_("ZGEMM ", &info); return 0; }/* Quick return if possible. */ if (*m == 0 || *n == 0 || (alpha->r == 0. && alpha->i == 0. || *k == 0) && (beta->r == 1. && beta->i == 0.)) { return 0; }/* And when alpha.eq.zero. */ if (alpha->r == 0. && alpha->i == 0.) { if (beta->r == 0. && beta->i == 0.) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * c_dim1; C(i,j).r = 0., C(i,j).i = 0.;/* L10: */ }/* L20: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * c_dim1; i__4 = i + j * c_dim1; z__1.r = beta->r * C(i,j).r - beta->i * C(i,j).i, z__1.i = beta->r * C(i,j).i + beta->i * C(i,j) .r; C(i,j).r = z__1.r, C(i,j).i = z__1.i;/* L30: */ }/* L40: */ } } return 0; }/* Start the operations. */ if (notb) { if (nota) {/* Form C := alpha*A*B + beta*C. */ i__1 = *n; for (j = 1; j <= *n; ++j) { if (beta->r == 0. && beta->i == 0.) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * c_dim1; C(i,j).r = 0., C(i,j).i = 0.;/* L50: */ } } else if (beta->r != 1. || beta->i != 0.) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * c_dim1; i__4 = i + j * c_dim1; z__1.r = beta->r * C(i,j).r - beta->i * C(i,j).i, z__1.i = beta->r * C(i,j).i + beta->i * C(i,j).r; C(i,j).r = z__1.r, C(i,j).i = z__1.i;/* L60: */ } } i__2 = *k; for (l = 1; l <= *k; ++l) { i__3 = l + j * b_dim1; if (B(l,j).r != 0. || B(l,j).i != 0.) { i__3 = l + j * b_dim1; z__1.r = alpha->r * B(l,j).r - alpha->i * B(l,j).i, z__1.i = alpha->r * B(l,j).i + alpha->i * B(l,j).r; temp.r = z__1.r, temp.i = z__1.i; i__3 = *m; for (i = 1; i <= *m; ++i) { i__4 = i + j * c_dim1; i__5 = i + j * c_dim1; i__6 = i + l * a_dim1; z__2.r = temp.r * A(i,l).r - temp.i * A(i,l).i, z__2.i = temp.r * A(i,l).i + temp.i * A(i,l).r; z__1.r = C(i,j).r + z__2.r, z__1.i = C(i,j).i + z__2.i; C(i,j).r = z__1.r, C(i,j).i = z__1.i;/* L70: */ } }/* L80: */ }/* L90: */ } } else if (conja) {/* Form C := alpha*conjg( A' )*B + beta*C. */ i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { temp.r = 0., temp.i = 0.; i__3 = *k; for (l = 1; l <= *k; ++l) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -