⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slamch.c

📁 SuperLU 2.2版本。对大型、稀疏、非对称的线性系统的直接求解
💻 C
📖 第 1 页 / 共 2 页
字号:
#include <stdio.h>#define TRUE_ (1)#define FALSE_ (0)#define min(a,b) ((a) <= (b) ? (a) : (b))#define max(a,b) ((a) >= (b) ? (a) : (b))#define abs(x) ((x) >= 0 ? (x) : -(x))#define dabs(x) (double)abs(x)double slamch_(char *cmach){/*  -- LAPACK auxiliary routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          October 31, 1992       Purpose       =======       SLAMCH determines single precision machine parameters.       Arguments       =========       CMACH   (input) CHARACTER*1               Specifies the value to be returned by SLAMCH:               = 'E' or 'e',   SLAMCH := eps               = 'S' or 's ,   SLAMCH := sfmin               = 'B' or 'b',   SLAMCH := base               = 'P' or 'p',   SLAMCH := eps*base               = 'N' or 'n',   SLAMCH := t               = 'R' or 'r',   SLAMCH := rnd               = 'M' or 'm',   SLAMCH := emin               = 'U' or 'u',   SLAMCH := rmin               = 'L' or 'l',   SLAMCH := emax               = 'O' or 'o',   SLAMCH := rmax               where               eps   = relative machine precision               sfmin = safe minimum, such that 1/sfmin does not overflow               base  = base of the machine               prec  = eps*base               t     = number of (base) digits in the mantissa               rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise               emin  = minimum exponent before (gradual) underflow               rmin  = underflow threshold - base**(emin-1)               emax  = largest exponent before overflow               rmax  = overflow threshold  - (base**emax)*(1-eps)      ===================================================================== *//* >>Start of File<<          Initialized data */    static int first = TRUE_;    /* System generated locals */    int i__1;    float ret_val;    /* Builtin functions */    double pow_ri(float *, int *);    /* Local variables */    static float base;    static int beta;    static float emin, prec, emax;    static int imin, imax;    static int lrnd;    static float rmin, rmax, t, rmach;    extern int lsame_(char *, char *);    static float small, sfmin;    extern /* Subroutine */ int slamc2_(int *, int *, int *, float 	    *, int *, float *, int *, float *);    static int it;    static float rnd, eps;    if (first) {	first = FALSE_;	slamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);	base = (float) beta;	t = (float) it;	if (lrnd) {	    rnd = 1.f;	    i__1 = 1 - it;	    eps = pow_ri(&base, &i__1) / 2;	} else {	    rnd = 0.f;	    i__1 = 1 - it;	    eps = pow_ri(&base, &i__1);	}	prec = eps * base;	emin = (float) imin;	emax = (float) imax;	sfmin = rmin;	small = 1.f / rmax;	if (small >= sfmin) {/*           Use SMALL plus a bit, to avoid the possibility of rounding                causing overflow when computing  1/sfmin. */	    sfmin = small * (eps + 1.f);	}    }    if (lsame_(cmach, "E")) {	rmach = eps;    } else if (lsame_(cmach, "S")) {	rmach = sfmin;    } else if (lsame_(cmach, "B")) {	rmach = base;    } else if (lsame_(cmach, "P")) {	rmach = prec;    } else if (lsame_(cmach, "N")) {	rmach = t;    } else if (lsame_(cmach, "R")) {	rmach = rnd;    } else if (lsame_(cmach, "M")) {	rmach = emin;    } else if (lsame_(cmach, "U")) {	rmach = rmin;    } else if (lsame_(cmach, "L")) {	rmach = emax;    } else if (lsame_(cmach, "O")) {	rmach = rmax;    }    ret_val = rmach;    return ret_val;/*     End of SLAMCH */} /* slamch_ *//* Subroutine */ int slamc1_(int *beta, int *t, int *rnd, int 	*ieee1){/*  -- LAPACK auxiliary routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          October 31, 1992       Purpose       =======       SLAMC1 determines the machine parameters given by BETA, T, RND, and       IEEE1.       Arguments       =========       BETA    (output) INT               The base of the machine.       T       (output) INT               The number of ( BETA ) digits in the mantissa.       RND     (output) INT               Specifies whether proper rounding  ( RND = .TRUE. )  or               chopping  ( RND = .FALSE. )  occurs in addition. This may not               be a reliable guide to the way in which the machine performs               its arithmetic.       IEEE1   (output) INT               Specifies whether rounding appears to be done in the IEEE               'round to nearest' style.       Further Details       ===============       The routine is based on the routine  ENVRON  by Malcolm and       incorporates suggestions by Gentleman and Marovich. See          Malcolm M. A. (1972) Algorithms to reveal properties of             floating-point arithmetic. Comms. of the ACM, 15, 949-951.          Gentleman W. M. and Marovich S. B. (1974) More on algorithms             that reveal properties of floating point arithmetic units.             Comms. of the ACM, 17, 276-277.      ===================================================================== */    /* Initialized data */    static int first = TRUE_;    /* System generated locals */    float r__1, r__2;    /* Local variables */    static int lrnd;    static float a, b, c, f;    static int lbeta;    static float savec;    static int lieee1;    static float t1, t2;    extern double slamc3_(float *, float *);    static int lt;    static float one, qtr;    if (first) {	first = FALSE_;	one = 1.f;/*        LBETA,  LIEEE1,  LT and  LRND  are the  local values  of  BETA,             IEEE1, T and RND.             Throughout this routine  we use the function  SLAMC3  to ensure             that relevant values are  stored and not held in registers,  or             are not affected by optimizers.             Compute  a = 2.0**m  with the  smallest positive integer m such             that                fl( a + 1.0 ) = a. */	a = 1.f;	c = 1.f;/* +       WHILE( C.EQ.ONE )LOOP */L10:	if (c == one) {	    a *= 2;	    c = slamc3_(&a, &one);	    r__1 = -(double)a;	    c = slamc3_(&c, &r__1);	    goto L10;	}/* +       END WHILE             Now compute  b = 2.0**m  with the smallest positive integer m             such that                fl( a + b ) .gt. a. */	b = 1.f;	c = slamc3_(&a, &b);/* +       WHILE( C.EQ.A )LOOP */L20:	if (c == a) {	    b *= 2;	    c = slamc3_(&a, &b);	    goto L20;	}/* +       END WHILE             Now compute the base.  a and c  are neighbouring floating point             numbers  in the  interval  ( beta**t, beta**( t + 1 ) )  and so             their difference is beta. Adding 0.25 to c is to ensure that it             is truncated to beta and not ( beta - 1 ). */	qtr = one / 4;	savec = c;	r__1 = -(double)a;	c = slamc3_(&c, &r__1);	lbeta = c + qtr;/*        Now determine whether rounding or chopping occurs,  by adding a             bit  less  than  beta/2  and a  bit  more  than  beta/2  to  a. */	b = (float) lbeta;	r__1 = b / 2;	r__2 = -(double)b / 100;	f = slamc3_(&r__1, &r__2);	c = slamc3_(&f, &a);	if (c == a) {	    lrnd = TRUE_;	} else {	    lrnd = FALSE_;	}	r__1 = b / 2;	r__2 = b / 100;	f = slamc3_(&r__1, &r__2);	c = slamc3_(&f, &a);	if (lrnd && c == a) {	    lrnd = FALSE_;	}/*        Try and decide whether rounding is done in the  IEEE  'round to             nearest' style. B/2 is half a unit in the last place of the two             numbers A and SAVEC. Furthermore, A is even, i.e. has last  bit             zero, and SAVEC is odd. Thus adding B/2 to A should not  change             A, but adding B/2 to SAVEC should change SAVEC. */	r__1 = b / 2;	t1 = slamc3_(&r__1, &a);	r__1 = b / 2;	t2 = slamc3_(&r__1, &savec);	lieee1 = t1 == a && t2 > savec && lrnd;/*        Now find  the  mantissa, t.  It should  be the  integer part of             log to the base beta of a,  however it is safer to determine  t             by powering.  So we find t as the smallest positive integer for             which                fl( beta**t + 1.0 ) = 1.0. */	lt = 0;	a = 1.f;	c = 1.f;/* +       WHILE( C.EQ.ONE )LOOP */L30:	if (c == one) {	    ++lt;	    a *= lbeta;	    c = slamc3_(&a, &one);	    r__1 = -(double)a;	    c = slamc3_(&c, &r__1);	    goto L30;	}/* +       END WHILE */    }    *beta = lbeta;    *t = lt;    *rnd = lrnd;    *ieee1 = lieee1;    return 0;/*     End of SLAMC1 */} /* slamc1_ *//* Subroutine */ int slamc2_(int *beta, int *t, int *rnd, float *	eps, int *emin, float *rmin, int *emax, float *rmax){/*  -- LAPACK auxiliary routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          October 31, 1992       Purpose       =======       SLAMC2 determines the machine parameters specified in its argument       list.       Arguments       =========       BETA    (output) INT               The base of the machine.       T       (output) INT               The number of ( BETA ) digits in the mantissa.       RND     (output) INT               Specifies whether proper rounding  ( RND = .TRUE. )  or               chopping  ( RND = .FALSE. )  occurs in addition. This may not               be a reliable guide to the way in which the machine performs               its arithmetic.       EPS     (output) FLOAT               The smallest positive number such that                  fl( 1.0 - EPS ) .LT. 1.0,               where fl denotes the computed value.       EMIN    (output) INT               The minimum exponent before (gradual) underflow occurs.       RMIN    (output) FLOAT               The smallest normalized number for the machine, given by               BASE**( EMIN - 1 ), where  BASE  is the floating point value               of BETA.       EMAX    (output) INT               The maximum exponent before overflow occurs.       RMAX    (output) FLOAT               The largest positive number for the machine, given by               BASE**EMAX * ( 1 - EPS ), where  BASE  is the floating point               value of BETA.       Further Details       ===============       The computation of  EPS  is based on a routine PARANOIA by       W. Kahan of the University of California at Berkeley.      ===================================================================== */    /* Table of constant values */    static int c__1 = 1;        /* Initialized data */    static int first = TRUE_;    static int iwarn = FALSE_;    /* System generated locals */    int i__1;    float r__1, r__2, r__3, r__4, r__5;    /* Builtin functions */    double pow_ri(float *, int *);    /* Local variables */    static int ieee;    static float half;    static int lrnd;    static float leps, zero, a, b, c;    static int i, lbeta;    static float rbase;    static int lemin, lemax, gnmin;    static float small;    static int gpmin;    static float third, lrmin, lrmax, sixth;    static int lieee1;    extern /* Subroutine */ int slamc1_(int *, int *, int *, 	    int *);    extern double slamc3_(float *, float *);    extern /* Subroutine */ int slamc4_(int *, float *, int *), 	    slamc5_(int *, int *, int *, int *, int *, 	    float *);    static int lt, ngnmin, ngpmin;    static float one, two;    if (first) {	first = FALSE_;	zero = 0.f;	one = 1.f;	two = 2.f;/*        LBETA, LT, LRND, LEPS, LEMIN and LRMIN  are the local values of             BETA, T, RND, EPS, EMIN and RMIN.             Throughout this routine  we use the function  SLAMC3  to ensure             that relevant values are stored  and not held in registers,  or             are not affected by optimizers.             SLAMC1 returns the parameters  LBETA, LT, LRND and LIEEE1. */	slamc1_(&lbeta, &lt, &lrnd, &lieee1);/*        Start to find EPS. */	b = (float) lbeta;	i__1 = -lt;	a = pow_ri(&b, &i__1);	leps = a;/*        Try some tricks to see whether or not this is the correct  EPS. */	b = two / 3;	half = one / 2;	r__1 = -(double)half;	sixth = slamc3_(&b, &r__1);	third = slamc3_(&sixth, &sixth);	r__1 = -(double)half;	b = slamc3_(&third, &r__1);	b = slamc3_(&b, &sixth);	b = dabs(b);	if (b < leps) {	    b = leps;	}	leps = 1.f;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -