⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlamch.c

📁 SuperLU 2.2版本。对大型、稀疏、非对称的线性系统的直接求解
💻 C
📖 第 1 页 / 共 2 页
字号:
#include <stdio.h>#include "Cnames.h"#define TRUE_ (1)#define FALSE_ (0)#define abs(x) ((x) >= 0 ? (x) : -(x))#define min(a,b) ((a) <= (b) ? (a) : (b))#define max(a,b) ((a) >= (b) ? (a) : (b))double dlamch_(char *cmach){/*  -- LAPACK auxiliary routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          October 31, 1992       Purpose       =======       DLAMCH determines double precision machine parameters.       Arguments       =========       CMACH   (input) CHARACTER*1               Specifies the value to be returned by DLAMCH:               = 'E' or 'e',   DLAMCH := eps               = 'S' or 's ,   DLAMCH := sfmin               = 'B' or 'b',   DLAMCH := base               = 'P' or 'p',   DLAMCH := eps*base               = 'N' or 'n',   DLAMCH := t               = 'R' or 'r',   DLAMCH := rnd               = 'M' or 'm',   DLAMCH := emin               = 'U' or 'u',   DLAMCH := rmin               = 'L' or 'l',   DLAMCH := emax               = 'O' or 'o',   DLAMCH := rmax               where               eps   = relative machine precision               sfmin = safe minimum, such that 1/sfmin does not overflow               base  = base of the machine               prec  = eps*base               t     = number of (base) digits in the mantissa               rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise               emin  = minimum exponent before (gradual) underflow               rmin  = underflow threshold - base**(emin-1)               emax  = largest exponent before overflow               rmax  = overflow threshold  - (base**emax)*(1-eps)      ===================================================================== */    static int first = TRUE_;    /* System generated locals */    int i__1;    double ret_val;    /* Builtin functions */    double pow_di(double *, int *);    /* Local variables */    static double base;    static int beta;    static double emin, prec, emax;    static int imin, imax;    static int lrnd;    static double rmin, rmax, t, rmach;    extern int lsame_(char *, char *);    static double small, sfmin;    extern /* Subroutine */ int dlamc2_(int *, int *, int *, 	    double *, int *, double *, int *, double *);    static int it;    static double rnd, eps;    if (first) {	first = FALSE_;	dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);	base = (double) beta;	t = (double) it;	if (lrnd) {	    rnd = 1.;	    i__1 = 1 - it;	    eps = pow_di(&base, &i__1) / 2;	} else {	    rnd = 0.;	    i__1 = 1 - it;	    eps = pow_di(&base, &i__1);	}	prec = eps * base;	emin = (double) imin;	emax = (double) imax;	sfmin = rmin;	small = 1. / rmax;	if (small >= sfmin) {	/* Use SMALL plus a bit, to avoid the possibility of rounding                causing overflow when computing  1/sfmin. */	    sfmin = small * (eps + 1.);	}    }    if (lsame_(cmach, "E")) {	rmach = eps;    } else if (lsame_(cmach, "S")) {	rmach = sfmin;    } else if (lsame_(cmach, "B")) {	rmach = base;    } else if (lsame_(cmach, "P")) {	rmach = prec;    } else if (lsame_(cmach, "N")) {	rmach = t;    } else if (lsame_(cmach, "R")) {	rmach = rnd;    } else if (lsame_(cmach, "M")) {	rmach = emin;    } else if (lsame_(cmach, "U")) {	rmach = rmin;    } else if (lsame_(cmach, "L")) {	rmach = emax;    } else if (lsame_(cmach, "O")) {	rmach = rmax;    }    ret_val = rmach;    return ret_val;/*     End of DLAMCH */} /* dlamch_ *//* Subroutine */ int dlamc1_(int *beta, int *t, int *rnd, int 	*ieee1){/*  -- LAPACK auxiliary routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          October 31, 1992       Purpose       =======       DLAMC1 determines the machine parameters given by BETA, T, RND, and       IEEE1.       Arguments       =========       BETA    (output) INT               The base of the machine.       T       (output) INT               The number of ( BETA ) digits in the mantissa.       RND     (output) INT               Specifies whether proper rounding  ( RND = .TRUE. )  or               chopping  ( RND = .FALSE. )  occurs in addition. This may not               be a reliable guide to the way in which the machine performs               its arithmetic.       IEEE1   (output) INT               Specifies whether rounding appears to be done in the IEEE               'round to nearest' style.       Further Details       ===============       The routine is based on the routine  ENVRON  by Malcolm and       incorporates suggestions by Gentleman and Marovich. See          Malcolm M. A. (1972) Algorithms to reveal properties of             floating-point arithmetic. Comms. of the ACM, 15, 949-951.          Gentleman W. M. and Marovich S. B. (1974) More on algorithms             that reveal properties of floating point arithmetic units.             Comms. of the ACM, 17, 276-277.      ===================================================================== */    /* Initialized data */    static int first = TRUE_;    /* System generated locals */    double d__1, d__2;    /* Local variables */    static int lrnd;    static double a, b, c, f;    static int lbeta;    static double savec;    extern double dlamc3_(double *, double *);    static int lieee1;    static double t1, t2;    static int lt;    static double one, qtr;    if (first) {	first = FALSE_;	one = 1.;/*        LBETA,  LIEEE1,  LT and  LRND  are the  local values  of  BETA,             IEEE1, T and RND.             Throughout this routine  we use the function  DLAMC3  to ensure             that relevant values are  stored and not held in registers,  or             are not affected by optimizers.             Compute  a = 2.0**m  with the  smallest positive integer m such             that                fl( a + 1.0 ) = a. */	a = 1.;	c = 1.;/* +       WHILE( C.EQ.ONE )LOOP */L10:	if (c == one) {	    a *= 2;	    c = dlamc3_(&a, &one);	    d__1 = -a;	    c = dlamc3_(&c, &d__1);	    goto L10;	}/* +       END WHILE             Now compute  b = 2.0**m  with the smallest positive integer m             such that                fl( a + b ) .gt. a. */	b = 1.;	c = dlamc3_(&a, &b);/* +       WHILE( C.EQ.A )LOOP */L20:	if (c == a) {	    b *= 2;	    c = dlamc3_(&a, &b);	    goto L20;	}/* +       END WHILE             Now compute the base.  a and c  are neighbouring floating point             numbers  in the  interval  ( beta**t, beta**( t + 1 ) )  and so             their difference is beta. Adding 0.25 to c is to ensure that it             is truncated to beta and not ( beta - 1 ). */	qtr = one / 4;	savec = c;	d__1 = -a;	c = dlamc3_(&c, &d__1);	lbeta = (int) (c + qtr);/*        Now determine whether rounding or chopping occurs,  by adding a             bit  less  than  beta/2  and a  bit  more  than  beta/2  to  a. */	b = (double) lbeta;	d__1 = b / 2;	d__2 = -b / 100;	f = dlamc3_(&d__1, &d__2);	c = dlamc3_(&f, &a);	if (c == a) {	    lrnd = TRUE_;	} else {	    lrnd = FALSE_;	}	d__1 = b / 2;	d__2 = b / 100;	f = dlamc3_(&d__1, &d__2);	c = dlamc3_(&f, &a);	if (lrnd && c == a) {	    lrnd = FALSE_;	}/*        Try and decide whether rounding is done in the  IEEE  'round to             nearest' style. B/2 is half a unit in the last place of the two             numbers A and SAVEC. Furthermore, A is even, i.e. has last  bit             zero, and SAVEC is odd. Thus adding B/2 to A should not  change             A, but adding B/2 to SAVEC should change SAVEC. */	d__1 = b / 2;	t1 = dlamc3_(&d__1, &a);	d__1 = b / 2;	t2 = dlamc3_(&d__1, &savec);	lieee1 = t1 == a && t2 > savec && lrnd;/*        Now find  the  mantissa, t.  It should  be the  integer part of             log to the base beta of a,  however it is safer to determine  t             by powering.  So we find t as the smallest positive integer for             which                fl( beta**t + 1.0 ) = 1.0. */	lt = 0;	a = 1.;	c = 1.;/* +       WHILE( C.EQ.ONE )LOOP */L30:	if (c == one) {	    ++lt;	    a *= lbeta;	    c = dlamc3_(&a, &one);	    d__1 = -a;	    c = dlamc3_(&c, &d__1);	    goto L30;	}/* +       END WHILE */    }    *beta = lbeta;    *t = lt;    *rnd = lrnd;    *ieee1 = lieee1;    return 0;/*     End of DLAMC1 */} /* dlamc1_ *//* Subroutine */ int dlamc2_(int *beta, int *t, int *rnd, 	double *eps, int *emin, double *rmin, int *emax, 	double *rmax){/*  -- LAPACK auxiliary routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          October 31, 1992       Purpose       =======       DLAMC2 determines the machine parameters specified in its argument       list.       Arguments       =========       BETA    (output) INT               The base of the machine.       T       (output) INT               The number of ( BETA ) digits in the mantissa.       RND     (output) INT               Specifies whether proper rounding  ( RND = .TRUE. )  or               chopping  ( RND = .FALSE. )  occurs in addition. This may not               be a reliable guide to the way in which the machine performs               its arithmetic.       EPS     (output) DOUBLE PRECISION               The smallest positive number such that                  fl( 1.0 - EPS ) .LT. 1.0,               where fl denotes the computed value.       EMIN    (output) INT               The minimum exponent before (gradual) underflow occurs.       RMIN    (output) DOUBLE PRECISION               The smallest normalized number for the machine, given by               BASE**( EMIN - 1 ), where  BASE  is the floating point value               of BETA.       EMAX    (output) INT               The maximum exponent before overflow occurs.       RMAX    (output) DOUBLE PRECISION               The largest positive number for the machine, given by               BASE**EMAX * ( 1 - EPS ), where  BASE  is the floating point               value of BETA.       Further Details       ===============       The computation of  EPS  is based on a routine PARANOIA by       W. Kahan of the University of California at Berkeley.      ===================================================================== */    /* Table of constant values */    static int c__1 = 1;        /* Initialized data */    static int first = TRUE_;    static int iwarn = FALSE_;    /* System generated locals */    int i__1;    double d__1, d__2, d__3, d__4, d__5;    /* Builtin functions */    double pow_di(double *, int *);    /* Local variables */    static int ieee;    static double half;    static int lrnd;    static double leps, zero, a, b, c;    static int i, lbeta;    static double rbase;    static int lemin, lemax, gnmin;    static double small;    static int gpmin;    static double third, lrmin, lrmax, sixth;    extern /* Subroutine */ int dlamc1_(int *, int *, int *, 	    int *);    extern double dlamc3_(double *, double *);    static int lieee1;    extern /* Subroutine */ int dlamc4_(int *, double *, int *), 	    dlamc5_(int *, int *, int *, int *, int *, 	    double *);    static int lt, ngnmin, ngpmin;    static double one, two;    if (first) {	first = FALSE_;	zero = 0.;	one = 1.;	two = 2.;/*        LBETA, LT, LRND, LEPS, LEMIN and LRMIN  are the local values of             BETA, T, RND, EPS, EMIN and RMIN.             Throughout this routine  we use the function  DLAMC3  to ensure             that relevant values are stored  and not held in registers,  or             are not affected by optimizers.             DLAMC1 returns the parameters  LBETA, LT, LRND and LIEEE1. */	dlamc1_(&lbeta, &lt, &lrnd, &lieee1);/*        Start to find EPS. */	b = (double) lbeta;	i__1 = -lt;	a = pow_di(&b, &i__1);	leps = a;/*        Try some tricks to see whether or not this is the correct  EPS. */	b = two / 3;	half = one / 2;	d__1 = -half;	sixth = dlamc3_(&b, &d__1);	third = dlamc3_(&sixth, &sixth);	d__1 = -half;	b = dlamc3_(&third, &d__1);	b = dlamc3_(&b, &sixth);	b = abs(b);	if (b < leps) {	    b = leps;	}	leps = 1.;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -